
Stabilization and the Core of Matching Games

Lucy Verberk

© Lucy Verberk, 2025

Stabilization and the Core of Matching Games

A catalogue record is available from the Eindhoven University of Technology
Library.

ISBN: 978-90-386-6473-6

Cover design by Lucy Verberk. The cover is based on a spray painting that
Lucy made during an activity with the SPOR cluster at Eindhoven University
of Technology.

Printed by ADC Nederland

Stabilization and the Core of Matching Games

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit
Eindhoven, op gezag van de rector magnificus prof.dr. S.K. Lenaerts,
voor een commissie aangewezen door het College voor Promoties, in
het openbaar te verdedigen op maandag 13 oktober 2025 om 16:00 uur

door

Lucy Petronella Antonia Verberk

geboren te Sint-Oedenrode

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van
de promotiecommissie is als volgt:

voorzitter: Prof. dr. M.G.J. van den Brand
1e promotor: Prof. dr. L. Sanità (Bocconi University)
2e promotor: Prof. dr. F.C.R. Spieksma
leden: Prof. dr. M.T. de Berg

Dr. K. Chandrasekaran (University of Illinois)
Prof. dr. B. Peis (RWTH Aachen University)
Prof. dr. G. Schäfer (Centrum Wiskunde & Informatica)

adviseur: Dr. U. Schmidt-Kraepelin

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in over-
eenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Contents

I Introduction 1

1 Prologue 3

2 Notation and General Definitions 11

2.1 Graph Theory . 11

2.1.1 Matching . 12

2.1.2 Capacity-Matching . 13

2.2 Fractional c-Matching Polytope 17

2.2.1 Circuits . 17

2.2.2 Basic Fractional c-Matchings 20

3 Problem Definition and Results 25

3.1 Network Bargaining Games . 25

3.1.1 Stabilization . 26

3.2 Cooperative Matching Games 31

3.2.1 Core Separation of 2-Matching Games 32

3.2.2 Two-Stage Assignment Games 33

3.3 Connection Between the Games 35

II Stabilization 41

4 The Stabilizer Problem 43

4.1 Vertex-Stabilizer . 43

4.2 Key Polyhedral Tools . 49

v

Contents

4.3 Capacity-Stabilizer . 56

4.3.1 Increasing the Capacity 62

4.4 Edge-Stabilizer . 66

5 The M-Stabilizer Problem 73

5.1 M -Vertex-Stabilizer . 73

5.1.1 Auxiliary Construction 74

5.1.2 Algorithm . 75

5.2 M -Edge-Stabilizer . 83

III Cooperative Matching Games 89

6 Core Separation of 2-Matching Games 91

6.1 Separating over the Core . 91

6.2 Compact Extended Formulation 95

7 Two-Stage Assignment Games 99

7.1 Explicit Distribution . 100

7.2 Implicit Distribution . 110

7.2.1 Hardness . 110

7.2.2 SAA Algorithm . 112

7.3 Multistage Setting . 114

Bibliography 125

List of Publications 131

Summary 133

Acknowledgements 135

About the Author 137

vi

Part I

Introduction

Chapter 1

Prologue

In this dissertation we look at two types of games: network bargaining games
and cooperative matching games. We introduce these using an example.

Adam and Betty both want to apply for a research grant together with their
colleague Charlotte. Charlotte, however, only has enough time for one new
research project. Both pairs, that is Adam with Charlotte, and Betty with
Charlotte, are eligible for an equally funded research grant. So let us say that
both pairs can obtain a funding of 1 unit of money.

We can represent this example situation, this instance, by a graph as shown
in Figure 1.1. A graph consists of vertices and edges, drawn as circles and
lines in Figure 1.1, respectively. In this case, the vertices represent Adam (A),
Betty (B) and Charlotte (C), and the edges represent the pairs that can apply
for a research grant. Both edges in Figure 1.1 have a number next to them,
called the weight of the edge, that represents the amount of funding the pair
can receive.

A

B

C

1

1

Figure 1.1: An instance.

We first explain network bargaining games using this example. When two
persons decide to apply for a grant together they must negotiate how to divide
the funding between them, that is, they have to bargain. In our example,
Charlotte has a very strong bargaining position, as she has multiple options.
Say Adam and Charlotte decide to apply for a research grant together, and

3

Chapter 1. Prologue

they split the funding equally, so both get 0.5. Charlotte can obtain more for
herself by suggesting to Betty that they instead apply together and split it such
that Charlotte gets 0.6 and Betty gets 0.4. Since Betty currently has nothing,
she is happy to accept this offer. But now Adam has nothing, and Charlotte
can use this to obtain even more. In particular, Charlotte can suggest to Adam
that they apply together and split it such that Charlotte gets 1 and Adam gets
0. Since Adam will not be worse off than he already is, he accepts the offer.

In general, instances can of course be much larger and more complicated. But
the idea remains the same: each person wants to form a pair with someone else,
and tries to bargain for as much value as possible. So what we are interested
in here is the pairs that are formed, and how each pair decides to split the
available value. The set of all pairs that are formed is what we call a matching
in the graph. An outcome to a network bargaining game is described by the
pairs that are formed, so a matching, and the value that each person obtains
from a pair. We can represent an outcome in a graph, by highlighting the
matching, and displaying the value each person obtains from a pair above the
corresponding edge. The outcome of the example we discussed before is shown
in Figure 1.2. In this figure the bold line indicates that Adam and Charlotte
apply for a research grant together, and the values above this edge indicate
that Adam gets 0 and Charlotte gets 1.

A

B

C

0
1

Figure 1.2: An outcome of a network bargaining game.

Now we explain cooperative matching games using the same example, but
with a bit more context: Adam, Betty and Charlotte are in a research group,
and the leader of their group wants them to cooperate to obtain as much
funding as possible for their group. To encourage Adam, Betty and Charlotte
to cooperate, the leader of the research group divides the obtained funding over
them in such a way that they cannot obtain more funding in smaller groups. In
this case, either Adam and Charlotte can apply together and receive a funding
of 1, or Betty and Charlotte can apply together and receive a funding of 1, but
not both pairs can apply. So as a group they can obtain a funding of at most 1.
Next, the leader decides how to divide this funding of 1 over Adam, Betty and
Charlotte, by looking at how much funding smaller groups can obtain. Adam
and Charlotte can form a smaller group, and obtain a funding of 1. So, if they
get less than 1 in the big group, they can obtain more by not cooperating with
the big group, and instead forming their own group. To prevent this from

4

happening, Adam and Charlotte together should get at least 1. As there is 1
to divide in total, this means that Betty gets 0. Similarly, Betty and Charlotte
can obtain a funding of 1 without Adam, so Adam also gets 0. That leaves
Charlotte with the entire funding of 1.

Again, in general, instances can be much larger and more complicated. But
the idea remains the same: everyone cooperates to obtain as much funding as
possible as a group, and they divide this over the group in such a way that no
smaller group can obtain more funding by leaving the big group. What we are
interested in here is how much value each person obtains. Even though we are
not interested in the specific pairs that are formed here, the total value that
the persons can divide over the group still comes from an underlying matching.
An outcome to a cooperative matching game is described by the value each
person obtains. We can represent an outcome in a graph, by displaying the
value each person obtains above the corresponding vertex. The outcome of the
example we discussed before is shown in Figure 1.3. In this figure the values
above the vertices indicate that Adam and Betty get 0, and Charlotte gets 1.

A
0

B
0

C
1

Figure 1.3: An outcome of a cooperative matching game.

At first sight it may seem that the only difference between these games is how
we present the outcome. But we will see an example later, where the two
games have a different outcome.

Now consider the instance where Adam and Charlotte are eligible for a research
grant twice the amount that Betty and Charlotte are eligible for. This new
instance is represented in Figure 1.4.

A

B

C

2

1

Figure 1.4: An instance.

We first discuss the network bargaining game on this instance. If Adam and
Charlotte now decide to apply for a research grant together and split the

5

Chapter 1. Prologue

funding equally, they both get 1. Charlotte still has Betty as an alternative
option, but this time that does not make her bargaining position stronger, as
she cannot obtain more for herself by switching to Betty. This outcome is
represented in Figure 1.5.

A

B

C

1
1

Figure 1.5: An outcome of a network bargaining game.

In the cooperative matching game on this instance, as a group they can obtain
a funding of at most 2, by letting Adam and Charlotte apply together. Clearly,
the smaller group consisting of Adam and Charlotte can also obtain a funding
of 2, which means that Betty gets 0. The smaller group consisting of Betty
and Charlotte can obtain a funding of 1. Then Adam can get at most 1:
there is 2 to divide in total, minus the 1 that the others can get without him.
So a possible outcome, that ensures that all smaller groups stay with the big
group, is: Betty gets 0, and Adam and Charlotte both get 1. This outcome is
represented in Figure 1.6.

A
1

B
0

C
1

Figure 1.6: An outcome of a cooperative matching game.

All the outcomes we have seen so far are stable: In the network bargaining
game, no two persons can both obtain more by deviating from the outcome
and instead applying together. In the cooperative matching game, no smaller
group can obtain more by leaving the big group. Next, we discuss an instance
where, for both games, there are no stable outcomes. We say that such an
instance is unstable.

We go back to the instance in Figure 1.1. There, both Adam and Betty got
nothing in the final outcome of either game, see Figures 1.2 and 1.3. Hence,
they decide that they can also apply for a research grant together instead.
They are eligible for a research grant of the same amount as the other pairs.
Figure 1.7 represents this new instance.

6

A

B

C

1

1

1

Figure 1.7: An instance.

So, in the network bargaining game, Adam and Betty decide to apply together
and split the funding equally, so they both get 0.5. But then the same happens
as before: both Adam and Betty have multiple options. Suppose Betty suggest
to Charlotte to apply together such that Betty gets 0.75 and Charlotte gets
0.25. Charlotte is happy to accept Betty’s offer, as currently she gets 0. How-
ever, now that Charlotte gets 0.25 she sees an opportunity to get even more.
Charlotte can instead apply with Adam such that she gets 0.6 and Adam gets
0.4. Adam can then instead apply with Betty such that he and Betty both
get 0.5. Now we are back where we started. This process is displayed in Fig-
ure 1.8. This will continue forever: whatever the current outcome is, there are
always two persons that can both obtain more by deviating from the current
outcome and instead applying for a research grant together.

A

B

C

0.5

0.5

A

B

C

0.75
0.25

A

B

C

0.4
0.6

Figure 1.8: Outcomes of a network bargaining game.

For the cooperative matching game on this instance, only one of the three
possible pairs can apply, which means that as a group they can obtain a
funding of at most 1. The smaller group consisting of Adam and Betty can
obtain a funding of 1, which means that Charlotte gets 0. Likewise, the smaller
group consisting of Adam and Charlotte can obtain a funding of 1, so Betty
also gets 0. But then the smaller group consisting of Betty and Charlotte gets
0, while they can obtain a funding of 1 by forming their own group. So, they

7

Chapter 1. Prologue

leave the big group. Whatever we do here, there is always a smaller group
that wants to leave the big group.

A new colleague, David, joins the team. He would also like to apply for a
research grant with his colleagues, and, moreover, he has time to start two
new research projects. To broaden his knowledge, he does not want to apply
with Charlotte, as she works on subjects he is already familiar with, and he
does not want to apply with the same person twice. Adam and Betty also
have time to start two new research projects, and they too do not want to
apply with the same person more than once. This instance is represented in
Figure 1.9. In this figure there is a number above or below each vertex, called
the capacity of the vertex, that represents the amount of research grants the
person can apply for. All the edges still have weight 1, but we left this out of
the figure to avoid clutter.

A
2

B
2

C
1

D
2

Figure 1.9: An instance.

This is a peculiar instance, as it is unstable in the network bargaining games
setting, but it is stable in the cooperative matching games setting. It is in-
teresting to note that this can only happen when not all vertex capacities are
one. Let us consider why it is the case for this example.

First we take a look at the network bargaining game on this instance. Say
the following pairs apply together for a research grant: Adam with Betty,
Adam with David, and Betty with David. They all split the funding equally.
This outcome is presented at the top of Figure 1.10. Looking only at Adam,
Betty and Charlotte in this outcome, the outcome looks exactly like before in
Figure 1.8. And indeed, the three of them form an unstable triangle again:
Betty can apply with Charlotte instead of Adam, then Charlotte can apply
with Adam instead of Betty, and finally, Adam can apply with Betty instead of
Charlotte, to end up where we started. This process is displayed in Figure 1.10.
Although none of the outcomes in Figure 1.10 are stable, this does not prove
that no stable outcome exists, as other outcomes are possible. Even so, in this
instance, there is no stable outcome.

Now for the cooperative matching game on this instance, at most three of the
possible pairs can apply at the same time, which means that as a group they
can obtain a funding of at most 3. Now let us take a look at what the smaller

8

A

B C

D
0.5

0.5

0.50.5

0.5

0.5

A

B C

D

0.75 0.25

0.50.5

0.5

0.5
A

B C

D
0.4

0.6

0.50.5

0.5

0.5

Figure 1.10: Outcomes of a network bargaining game.

groups can obtain. The smaller group consisting of Adam, Betty and David
can apply for a total of 3 as well. So Charlotte gets 0, otherwise the three
of them would leave the big group. The smaller group consisting of Adam,
Betty and Charlotte can apply for a total of 2, which means that David can
get at most 1: 3 to divide in total, minus the 2 that the others can obtain
without him. The same holds for Adam and Betty, they can also get at most
1. Since we have 3 to divide, we can give all three of them exactly 1. So the
outcome here is Adam, Betty and David all get 1 and Charlotte gets 0. This
outcome is represented in Figure 1.11, where the numbers above and below
each vertex now represent the outcome, instead of the capacities. Any smaller
group consisting of only two persons can apply for a funding of at most 1, and
in this outcome, all those groups get 1 or 2. So, no smaller group can obtain
more by leaving the big group, which means this outcome is stable.

A
1

B
1

C
0

D
1

Figure 1.11: An outcome of a cooperative matching game.

In the remainder of Part I we first introduce notation and general definitions.
Then we formally state the problem and give an overview of our results and
previously known results.

In Part II we look at stabilizing network bargaining games: modify an unstable

9

Chapter 1. Prologue

instance to obtain a stable instance. For example, we saw that the instance
in Figure 1.7 is unstable, and the instance in Figure 1.1 is stable. So we can
stabilize the instance in Figure 1.7 by removing the edge between A and B,
thereby not allowing Adam and Betty to apply for a research grant together.
Besides removing edges, other modifications that we consider are removing
vertices and reducing the capacity of vertices. In our examples, these modifi-
cations correspond to not allowing a person to apply for any research grants,
and lowering the amount of research grants a person is allowed to apply for.

In Part III we look at the set of stable outcomes for cooperative matching
games, which is called the core. Given an outcome to the game, we are in-
terested in determining if this outcome is stable, that is, if it is in the core.
We also consider a dynamic setting where, after a stable outcome is found
for the game, the instance might change. For example, some persons might
decide they do not want to participate after all. To anticipate changes, we
want to find a stable outcome that minimizes the amount of value we expect
participants to lose when the instance changes.

10

Chapter 2

Notation and General Definitions

In Section 2.1 we introduce graph theory notation and definitions. In Sec-
tion 2.2 we discuss the circuits of the fractional c-matching polytope and basic
fractional c-matchings.

2.1 Graph Theory

A graph G = (V,E) consists of a set V of vertices and a set E of edges
connecting the vertices, that is, if e ∈ E then e = {u, v} for some u, v ∈ V . We
use the shorthand notation e = uv. We say that u and v are adjacent, that
u and v are neighbors, and that u and v are incident with e. We denote by
N(v) = {u ∈ V : uv ∈ E} the neighborhood of v, by N+(v) = N(v)∪{v}, and
by δ(v) = {e ∈ E : v ∈ e} all edges incident with v. We denote by dv = |δ(v)|
the degree of v. For any F ⊆ E, we define δF (v) = {e ∈ F : v ∈ e} as the set
of edges of F incident with v, and dFv = |δF (v)| as the degree of v with respect
to the edges in F . We let n = |V | and m = |E|.

A graph G = (V,E) is bipartite if there are two subsets V1, V2 ⊆ V that
partition the vertices V , such that for all edges uv ∈ E either u ∈ V1, v ∈ V2

or v ∈ V1, u ∈ V2.

We consider graphs with edge weights w ∈ RE
≥0 and vertex capacities c ∈ ZV

≥0.
We refer to a graph G with edge weights w and vertex capacities c as (G,w, c),
we say that G is a weighted, capacitated graph. If all edge weights are one,
we denote this by (G, 1, c), and we say that G is a unit-weight, capacitated
graph. If all vertex capacities are one, we denote this by (G,w, 1), and we say
that G is a weighted, unit-capacity graph. If G is a unit-weight, unit-capacity
graph we denote this by (G, 1, 1).

11

Chapter 2. Notation and General Definitions

For any set X, subset Y ⊂ X and vector x ∈ RX , we denote by x(Y) =∑
e∈Y xe. For example, for F ⊆ E we denote by w(F) the total weight of the

edges in F . For any two vectors x, y ∈ RX , we denote by x⊤y =
∑

e∈X xeye.

We denote a (uv-)walk W by listing its edges and endpoints sequentially, that
is, by W = (u; e1, . . . , ek; v). We define its inverse as W−1 = (v; ek, . . . , e1;u).
We say a walk is closed if u = v. A trail is a walk in which edges do not repeat.
A path is a trail in which internal vertices do not repeat. A cycle is a path
which starts and ends at the same vertex. If we refer to the edge set of a walk
W , we just write W . Note that this can be a multiset.

Let S ⊆ V , then G[S] is the graph induced by the vertices of S, and G \ S =
G[V \ S] is the graph with the vertices in S removed. Let F ⊆ E, then
G \ F = (V,E \ F) is the graph with the edges in F removed. Let S be a
multiset of vertices V . We denote by G[cS − 1] the graph G with the capacity
of all vertices in S reduced by one. Note that, if a vertex appears, for example,
twice in S, its capacity is reduced by two. We use cS−1 to refer to the capacities
in G[cS − 1]. For a vertex s ∈ S, with S \ s we mean removing s just once
from S.

2.1.1 Matching

Given a graph (G,w, 1), a matching is a subset M ⊆ E such that dMv ≤ 1 for
all v ∈ V . We denote the weight of a maximum-weight matching by ν(G),
formally defined as

ν(G) = max{w(M) : dMv ≤ 1 ∀v ∈ V,M ⊆ E}.

The linear programming (LP) relaxation of this problem is given by

νf (G) = max{w⊤x : x(δ(v)) ≤ 1 ∀v ∈ V, x ≥ 0}.

We say that an x feasible for this LP is a fractional matching. The LP dual
of this is

τf (G) = min{1⊤y : yu + yv ≥ wuv ∀uv ∈ E, y ≥ 0}.
We say that a y feasible for this LP is a fractional vertex cover. By standard
LP theory and duality theory we have ν(G) ≤ νf (G) = τf (G), for all graphs
(G,w, 1). The complementary slackness conditions of νf (G) and τf (G) are

xuv = 0 or yu + yv = wuv for all uv ∈ E, (2.1a)

yv = 0 or x(δ(v)) = 1 for all v ∈ V. (2.1b)

In the next section we define c-matchings and structures involving c-matchings
M , like M -alternating walks. These structures also apply to matchings.

12

2.1. Graph Theory

2.1.2 Capacity-Matching

Given a graph (G,w, c), a c-matching (capacity-matching) is a subset M ⊆ E
such that dMv ≤ cv for all v ∈ V . Note that we can assume without loss of
generality that cv ≤ dv for all v ∈ V . We denote the weight of a maximum-
weight c-matching by νc(G), formally defined as

νc(G) = max{w(M) : dMv ≤ cv ∀v ∈ V,M ⊆ E}.

The LP relaxation of this problem is given by

νcf (G) = max{w⊤x : x(δ(v)) ≤ cv ∀v ∈ V, 0 ≤ x ≤ 1}.

We say that an x feasible for this LP is a fractional c-matching. The LP dual
of this is

τ cf (G) = min{c⊤y + 1⊤z : yu + yv + zuv ≥ wuv ∀uv ∈ E, y ≥ 0, z ≥ 0}.

We say that a (y, z) feasible for this LP is a fractional vertex cover. It
will be clear from context if we mean a fractional vertex cover y or a frac-
tional vertex cover (y, z). By standard LP theory and duality theory we have
νc(G) ≤ νcf (G) = τ cf (G), for all graphs (G,w, c). The complementary slackness
conditions of νcf (G) and τ cf (G) are

xuv = 0 or yu + yv + zuv = wuv for all uv ∈ E, (2.2a)

yv = 0 or x(δ(v)) = cv for all v ∈ V, (2.2b)

zuv = 0 or xuv = 1 for all uv ∈ E. (2.2c)

Given a c-matching M , we say that v ∈ V is exposed if dMv = 0, covered if
dMv > 0, unsaturated if dMv < cv and saturated if dMv = cv. We also use these
terms for fractional c-matchings x, for example, v is saturated if x(δ(v)) = cv.

For a walk W (possibly a multiset) and a c-matching M (not a multiset),
we define W \M = {e ∈ W : e /∈ M} and W ∩M = {e ∈ W : e ∈ M}.
For example, let W = (u; e1, e2, e3, e1, e2; v) and M = {e2}, then W \M =
{e1, e3, e1} and W ∩M = {e2, e2}. We let △ denote the symmetric difference
operator: W△M = (W \M) ∪ (M \W) for two sets W and M .

Definition 2.1. We say that a walk W is M -alternating (w.r.t. a c-matching
M) if its edges are alternating between M and E \ M . We say W is M -
augmenting if it is M -alternating and w(W \ M) > w(W ∩ M). An M -
alternating uv-walk W is proper if W△M is a c-matching.

13

Chapter 2. Notation and General Definitions

Definition 2.2. Given an M -alternating walk W = (u; e1, . . . , ek; v) and an
ε > 0, the ε-augmentation of W is the vector xM/W (ε) ∈ RE given by

xM/W
e (ε) =

{
1− κ(e)ε if e ∈M,

κ(e)ε if e /∈M,

where κ(e) = |{i ∈ [k] : ei = e}|. We say that W is feasible if there exists
an ε > 0 such that the corresponding ε-augmentation of W is a fractional
c-matching.

To get a better understanding of proper and feasible, we characterize proper
and feasible for different kinds of walks. (i) Nonclosed walks: An M -alterna-
ting walk W = (u; e1, . . . , ek; v), where u ̸= v, is proper and feasible if and
only if the following hold: (a) either e1 ∈ M or dMu ≤ cu − 1, and (b) either
ek ∈ M or dMv ≤ cv − 1. (ii) Even-length closed walks: An M -alternating
walk W = (v; e1, . . . , ek; v), such that k is even, is always proper and feasible.
(iii) Odd-length closed walks: An M -alternating walk W = (v; e1, . . . , ek; v),
such that k is odd, is proper if and only if either e1, ek ∈ M or dMv ≤ cv − 2,
and feasible if and only if either e1, ek ∈M or dMv ≤ cv − 1. See Figure 2.1 for
examples of these different kinds of walks.

u v

(a) This nonclosed M -alternating walk is proper and feasible. The nonclosed
M -alternating walk between u and v is neither proper nor feasible, because
dMu = 1 = cu.

(b) This even-length closed M -alter-
nating walk is proper and feasible.

v

(c) This odd-length closed M -alt-
ernating walk is feasible, but not
proper, because dMv = 0 = cv − 1.
If cv = 2, then it would be proper
and feasible.

Figure 2.1: Examples of different types of M -alternating walks. All
capacities are 1, unless specified otherwise.

Proposition 2.1. A feasible M -alternating walk with distinct endpoints is
proper.

Proof. Let W = (u; e1, . . . , ek; v) be a feasible M -alternating walk with u ̸= v.
If e1 ∈M , then dW△M

u = dMu − 1 ≤ cu − 1. If e1 /∈M , then dW△M
u = dMu + 1.

14

2.1. Graph Theory

Furthermore, since W is feasible, we have xM/W (ε)(δ(u)) ≤ cu. We also have
xM/W (ε)(δ(u)) = dMu + ε > dMu . Since cu and dMu are both integral, we have
dMu + 1 ≤ cu, which implies dW△M

u ≤ cu. The exact same argument can
be repeated for v, by replacing u by v, and e1 by ek. It follows that W is
proper.

We next define M -blossom, M -flower and M -bi-cycle. See Figure 2.2 for some
examples of these structures.

Definition 2.3. An odd cycle C = (v; e1, . . . , ek; v) is called an M -blossom if
it is M -alternating such that either e1 and ek are both in M , or are both not
in M . The vertex v is called the base of the blossom.

Definition 2.4. An M -flower C ∪ P consists of an M -blossom C with base
v and an M -alternating path P = (u; e1, . . . , ek; v) such that (P,C, P−1) is
M -alternating and feasible. The vertex v is called the root of the flower. The
flower is M -augmenting if

w(C \M) + 2w(P \M) > w(C ∩M) + 2w(P ∩M).

Definition 2.5. An M -bi-cycle C ∪ P ∪ D consists of two M -blossoms C
and D with bases u and v, respectively, and an M -alternating path P =
(u; e1, . . . , ek; v) such that (P,D, P−1, C) is M -alternating. The bi-cycle is
M -augmenting if

w(C \M) + 2w(P \M) +w(D \M) > w(C ∩M) + 2w(P ∩M) +w(D ∩M).

Note that, in the last two definitions, it may happen that P has no edges.

(a) An example of an M -blossom, or
an M -flower with empty P .

(b) An example of an M -flower
with nonempty P .

(c) An example of an M -bi-cycle with
nonempty P .

(d) An example of an M -bi-cycle
with empty P .

Figure 2.2: Examples of an M -blossom, M -flower and M -bi-cycle.

15

Chapter 2. Notation and General Definitions

In the unit-capacity case it is well-known that a matching M has maximum
weight if and only if there do not exist any proper M -augmenting paths or
cycles. This generalizes to the capacitated case. We report a proof for com-
pleteness.

Theorem 2.1. A c-matching M in (G,w, c) has maximum weight if and only
if G does not contain a proper M -augmenting trail.

Proof. (⇒) If G contains a proper M -augmenting trail T , then M△T is a
c-matching and w(M△T) > w(M), which means M does not have maximum
weight.

(⇐) Let M be a c-matching in G such that M does not have maximum weight.
We will show that G contains a proper M -augmenting trail. Let N be a
maximum-weight c-matching, and consider the graph induced by M△N . We
construct a unit-capacity graph Ĝ:

1. For each v ∈ V , define bv = max{dM\N
v , d

N\M
v }, create copies v1, . . . , vbv

and add them to V (Ĝ). Initialize JM (v) = JN (v) = {1, . . . , bv}.
2. For each uv ∈M \N , add a single edge uivj to both E(Ĝ) and M̂ with

edge-weight wuv, where i ∈ JM (u) and j ∈ JM (v) are chosen arbitrarily.
Remove i and j from JM (u) and JM (v), respectively.

3. Likewise for each uv ∈ N \M .

Observe that this construction establishes a natural weight-preserving bijection
between E and E(Ĝ). Furthermore, the sets M̂ and N̂ are matchings in Ĝ,
and w(N) > w(M) implies w(N̂) > w(M̂). In particular, M̂ is not maximum-
weight in Ĝ. Since Ĝ has unit-capacities, it contains at least one proper M̂ -
augmenting path or cycle T̂ . Let T = (u; e1, . . . , ek; v) be the correspondingM -
alternating walk inG. Since T̂ does not repeat edges and is actually alternating
between M̂ and N̂ , T is alternating between M \N and N \M , and also does
not repeat edges, that is, T is a trail. Since w(T̂ \ M̂) > w(T̂ ∩ M̂), we also
have w(T \M) > w(T ∩M), that is, T is an M -augmenting trail. Thus, we
only need to show that T is proper, that is, that dT△M

u ≤ cu and dT△M
v ≤ cv.

Case 1: T̂ is a proper M̂ -augmenting path. If u = v, then provided that at
least one of e1 and ek is in M , then dT△M

u ≤ dMu ≤ cu. If on the other hand
neither of e1 and ek is in M , then the corresponding edges ê1 and êk in T̂
are not in M̂ , and must therefore be in N̂ . Let ui and uj be the first and

last vertices of T̂ , incident with ê1 and êk, respectively. Note that ui and uj

are distinct, since T̂ is a path. Furthermore, since T̂ is proper, ui and uj are

not incident with edges from M̂ . Observe that by construction of Ĝ, either
all vertices in {u1, . . . , ubu} are M̂ -covered or N̂ -covered. Since ui and uj are

not M̂ -covered, all copies of u must be N̂ -covered. Hence, d
M\N
u ≤ d

N\M
u − 2,

which means dMu ≤ dNu − 2. Finally, dT△M
u = dMu + 2 ≤ dNu ≤ cu.

16

2.2. Fractional c-Matching Polytope

If u ̸= v, we again consider whether or not e1 and ek are in M . Since u and
v are distinct, these cases for e1 and ek are independent. If e1 ∈ M , then
dT△M
u = dMu −1 ≤ cu. If e1 /∈M , then dT△M

u = dMu +1, and ê1 is in N̂ , not in
M̂ . Let ui be the copy of u that is incident with ê1. Since ui is the first vertex
of T̂ , and T̂ is proper, ui is not incident with any edge from M̂ . By construction

of Ĝ, every copy of u must be N̂ -covered. Hence, d
M\N
u ≤ d

N\M
u − 1, which

means dMu ≤ dNu − 1. Therefore, dT△M
u = dMu +1 ≤ dNu ≤ cu. By symmetry of

u and v, we also have dT△M
v ≤ cv both if ek ∈M and ek /∈M .

Case 2: T̂ is a M̂ -augmenting cycle. In this case u = v and exactly one of e1
and ek is in M and one is not, which means dT△M

u = dMu ≤ cu.

2.2 Fractional c-Matching Polytope

The polytope of fractional c-matchings in G is PFCM(G, c), formally defined
as

PFCM(G, c) =
{
x ∈ RE : x(δ(v)) ≤ cv ∀v ∈ V, 0 ≤ x ≤ 1

}
.

We write PFCM if G and c are clear from the context or irrelevant.

We first explain some general polyhedral terminology. A convex combination
of points x1, . . . , xk is α1x1 + · · · + αkxk, where α1, . . . , αk ≥ 0 and α1 +
· · · + αk = 1. An extreme point, or vertex, of a polyhedron is a point in the
polyhedron that cannot be written as a convex combination of other points in
the polyhedron. Equivalently, an extreme point of a polyhedron (⊆ Rn) is a
point for which n linearly independent constraints are tight, that is, satisfied
with equality. An edge of a polyhedron is a line of points such that for all
those points the same n − 1 linearly independent constraints are tight. The
end points of an edge are vertices of the polyhedron, and the edge itself is the
line of all convex combinations of those two vertices.

2.2.1 Circuits

Let e be an edge of a polyhedron P = {x ∈ Rn : Ax = b, Bx ≤ d}, where
A and B are integral matrices, and b and d are rational vectors. The edge
direction of e is the (single) vector v − w for any two distinct points v and
w on e. Taking two different points results in a scalar multiple of the same
edge direction. The circuits of a polyhedron (described by A and B) are all
potential edge directions that can appear for any choice of rational b and d (see
Theorem 1.8 in Finhold [22]). Let C(P) denote the set of circuits of P with
co-prime integer components. Note that C(P) contains two edge directions,
which are each other’s negative, for every potential edge. We use the notion

17

Chapter 2. Notation and General Definitions

of circuits of a polyhedron, instead of circuits of A and B, as any minimal
description of P yields the same set of circuits (see Lemma 3 in Kafer [31]).

For a characterization of the circuits of the fractional c-matching polytope
PFCM(G, c) we rely on De Loera et al. [16], who defined five classes of graphs
(E1, E2, E3, E4, E5), listed below. See Figure 2.3 for examples of these subgraphs.

(i) Let E1 denote the set of all subgraphs F ⊆ G such that F is an even
cycle.

(ii) Let E2 denote the set of all subgraphs F ⊆ G such that F is an odd
cycle.

(iii) Let E3 denote the set of all subgraphs F ⊆ G such that F is a path.

(iv) Let E4 denote the set of all subgraphs F ⊆ G such that F = C ∪ P ,
where C is an odd cycle, and P is a nonempty path that intersects C
only at one endpoint.

(v) Let E5 denote the set of all subgraphs F ⊆ G such that F = C1∪P ∪C2,
where C1 and C2 are odd cycles, and P is a path satisfying the following:
if P is nonempty, then C1 and C2 are vertex-disjoint and P intersects
each Ci exactly at its endpoints; if P is empty then C1 and C2 intersect
at only one vertex.

A set of circuits can be associated to the subgraphs in these classes by defining
(again, see Figure 2.3 for examples):

C1 =
⋃

F∈E1

{
g ∈ {−1, 0, 1}E : g(e) ̸= 0 iff e ∈ E(F)

g(δ(v)) = 0 ∀v ∈ V (F)
}
,

C2 =
⋃

F∈E2

{
g ∈ {−1, 0, 1}E : g(e) ̸= 0 iff e ∈ E(F)

g(δ(w)) ̸= 0 for one w ∈ V (F)

g(δ(v)) = 0 ∀v ∈ V (F) \ {w}
}
,

C3 =
⋃

F∈E3

{
g ∈ {−1, 0, 1}E : g(e) ̸= 0 iff e ∈ E(F)

g(δ(v)) = 0 ∀v : |δ(v) ∩ E(F)| = 2
}
,

C4 =
⋃

F=(C∪P)∈E4

{
g ∈ ZE : g(e) ̸= 0 iff e ∈ E(F)

g(δ(v)) = 0 ∀v : |δ(v) ∩ E(F)| ≥ 2
g(e) ∈ {−1, 1} ∀e ∈ E(C)
g(e) ∈ {−2, 2} ∀e ∈ E(P)

}
,

C5 =
⋃

F=(C1∪P∪C2)∈E5

{
g ∈ ZE : g(e) ̸= 0 iff e ∈ E(F)

g(δ(v)) = 0 ∀v ∈ V (F)
g(e) ∈ {−1, 1} ∀e ∈ E(C1 ∪ C2)
g(e) ∈ {−2, 2} ∀e ∈ E(P)

}
.

18

2.2. Fractional c-Matching Polytope

1

−1

1

−1

(a) An example of a subgraph in E1

and a circuit g ∈ C1 given on its
edges.

1
−1

1

−1
1

(b) An example of a subgraph in E2

and a circuit g ∈ C2 given on its
edges.

1 −1 1 −1
(c) An example of a subgraph in E3 and a circuit g ∈ C3 given on its edges.

1
−1

1

−1
1

−2 2 −2

(d) An example of a subgraph in E4 and a circuit g ∈ C4 given on its edges.

1
−1

1

−1
1

−2 2

−1
1

−1

(e) An example of a subgraph in E5 with nonempty P and a circuit g ∈ C5

given on its edges.

1
−1

1

−1
1

−1
1

−1

(f) An example of a subgraph in E5 with empty P and a circuit g ∈ C5 given
on its edges.

Figure 2.3: Examples of the subgraphs in (E1, E2, E3, E4, E5) and the
circuits defined on them.

19

Chapter 2. Notation and General Definitions

De Loera et al. [16] show that C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 is the set of circuits of
the fractional matching polytope, that is, PFCM with c = 1 and without the
(redundant) constraints x ≤ 1. Since the set of circuits stays the same if the
right hand side vector changes (note that the constraints x ≤ 1 are parallel
to x ≥ 0), the same set of circuits apply to C(PFCM). Hence, we have the
following proposition.

Proposition 2.2. C(PFCM) = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5.

2.2.2 Basic Fractional c-Matchings

We refer to the vertices of PFCM as basic fractional c-matchings. The next
result is well known, see for example Theorem 20 in Appa and Kotnyek [3] for
half-integrality of general polytopes, but we provide a proof for completeness.

Theorem 2.2. A fractional c-matching x is basic if and only if its components
are equal to 0, 1

2 or 1, and the edges with xe = 1
2 induce vertex-disjoint odd

cycles with saturated vertices.

Proof. (⇒) Let x be a basic fractional c-matching, and let H be a connected
component of the graph induced by the edges with fractional value in x. First,
note that H contains no even cycle, and no inclusion-wise maximal path with
distinct endpoints: Otherwise, let D be an even cycle or an inclusion-wise
maximal path with distinct endpoints in H. Let g ∈ C1 ∪ C3 be the circuit
associated to it. Then, x+ εg and x− εg are both fractional c-matchings, for
a small value of ε. However, as x is a convex combination of x+εg and x−εg,
this contradicts that x is an extreme point.

Let T be any spanning tree of H. First, assume there exist two distinct edges
f1, f2 ∈ E(H) \ E(T). Then, adding f1 (respectively, f2) to T creates an odd
cycleD1 (respectively, D2). These cycles cannot intersect in an edge, otherwise
their support would contain an even cycle. Hence, they must be edge disjoint.
The cycles can also not intersect in more than one vertex, otherwise their
support again contains an even cycle. So, they either intersect at one vertex,
or are connected via a path in T . In either case, one can associate to these
edges a circuit g ∈ C5. Then, x+εg and x−εg are both fractional c-matchings,
for a small value of ε, reaching a contradiction again. These arguments show
that there is a unique edge f ∈ E(H) \ E(T).

Since H cannot contain inclusion-wise maximal paths, it contains at most one
vertex of degree 1. If H contains exactly one such vertex u, then u and the odd
cycle (created by adding f to T) are connected via a path. One can associate
a circuit g ∈ C4 to the edges in this cycle and path. Again, considering x+ εg
and x− εg results in a contradiction. So H does not have any vertex of degree

20

2.2. Fractional c-Matching Polytope

1, which means that the endpoints of f must be the leaves of T . Hence, T is
a path and H is a cycle. Necessarily, H must be odd.

Finally, no vertex in H can be unsaturated, as otherwise, we can associate a
circuit g ∈ C2 to H, where the unsaturated vertex u is the only vertex with
g(δ(u)) ̸= 0. Once again, we reach a contradiction by considering x + εg and
x− εg. Since H is an odd cycle with saturated vertices, the edges in H must
have value 1

2 in x.

In conclusion, if xe /∈ {0, 1}, it must equal 1
2 and e must be part of an odd

cycle. Furthermore, these odd cycles are vertex-disjoint, and all vertices part
of an odd cycle are saturated.

(⇐) Consider a vector w with we = 1 for all edges e in the support of x, and
we = −1 for all other edges. Then, x is the unique optimal solution when
maximizing the function w over PFCM. Hence x is an extreme point.

We partition the support of a basic fractional c-matching x into the odd cycles
induced by xe = 1

2 -edges: Cx = {C1, . . . , Cq} (later referred to as fractional
odd cycles), and matched edges: Mx = {e ∈ E : xe = 1}. We next define
two operations that change the value of a basic fractional c-matching on the
support of a fractional odd cycle.

Definition 2.6. Alternate rounding C = (v; e1, . . . , e2k+1; v) ∈ Cx exposing
v means replacing xe by x̂e = 0 for all e ∈ {e1, e3, . . . , e2k+1} and by x̂e = 1
for all e ∈ {e2, e4, . . . , e2k}. Similarly, alternate rounding C ∈ Cx covering v
means replacing xe by x̂e = 1 for all e ∈ {e1, e3, . . . , e2k+1} and by x̂e = 0 for
all e ∈ {e2, e4, . . . , e2k}.

Let X be the set of basic maximum-weight fractional c-matchings in G. Define
γ(G) = minx∈X |Cx|, as the minimum number of fractional odd cycles in the
support of any basic maximum-weight fractional c-matching in G. Koh and
Sanità [36] propose an algorithm to obtain a basic maximum-weight fractional
matching with minimum number of fractional odd cycles (|Cx| = γ(G)). We
generalize their result to c-matchings.

Theorem 2.3. A basic maximum-weight fractional c-matching x with |Cx| =
γ(G) can be computed in polynomial time.

Proof. Given a graph (G = (V,E), w, c), we reduce it to a unit-capacity graph
(Ĝ = (V̂ , Ê), ŵ, 1) using the following reduction. We replace each edge e = uv
by two new vertices: eu, ev, and three new edges: uev, eveu, euv all of weight
we. We replace each (original) vertex v by cv copies: v1, . . . , vcv (recall that
we can assume without loss of generality that cv ≤ dv), and each edge veu
incident with v, by an edge between each of the cv copies of v and eu, all of
the same weight as veu (so we).

21

Chapter 2. Notation and General Definitions

Next, we compute a basic maximum-weight fractional matching x̂ in Ĝ with
minimum number of odd cycles (|Cx̂| = γ(Ĝ)), using the algorithm from Koh
and Sanità [36]. Consider the subgraph of Ĝ corresponding with an edge e ∈ E.
Since x̂ is basic and has maximum weight, there are only a few possibilities for
this subgraph, see Figures 2.4a to 2.4e.

ui ev eu vj

(a)

ui ev eu vj

(b)

ui ev eu vj

(c)

ui ev eu vj

(d)

fs

gt

ui

uk

ev eu vj

(e)

fs

gt

ui

uk

ev eu vj

(f)

Figure 2.4: Figures 2.4a to 2.4e indicate the possible scenarios for the
subgraph of Ĝ corresponding with an edge e ∈ E. Figure 2.4f shows how
the matching in Figure 2.4e can be changed without affecting the weight
of the matching. Normal, dashed and bold edges indicate an x̂ value of
0, 1

2 and 1, respectively. No edge between eu and vj indicates the value
of the edges between eu and the copies of v are irrelevant. For clarity,
we have only drawn the relevant vertices and edges (e = uv, f = us,
g = ut).

In fact, we can assume without loss of generality we only have the scenarios
shown in Figures 2.4a to 2.4c. Indeed, Figures 2.4d and 2.4e can be trans-
formed into Figures 2.4a and 2.4f, respectively, without affecting ŵ⊤x̂ and
|Cx̂|. The scenario in Figure 2.4f, depending on what is happening between
eu and the copies of v, corresponds to the scenario in Figure 2.4b, 2.4d, or
2.4e. If Figure 2.4f corresponds with Figure 2.4d, it can again be transformed
into Figure 2.4a. If Figure 2.4f corresponds with Figure 2.4e, then note that
now there is a matched edge between eu and one of the copies of v. So, it can
be transformed into Figure 2.4f another time, such that this time Figure 2.4f
corresponds to Figure 2.4b.

Then x̂ can be translated to a fractional c-matching x in G, as follows: set
xe = 0 in case of Figure 2.4a, xe = 1 in case of Figure 2.4b, and xe =

1
2 in case

of Figure 2.4c. We have w⊤x = ŵ⊤x̂−w(E): in Figure 2.4a the weight of x is
0, while the weight of x̂ is we, in Figure 2.4b the weight of x is we, while the

22

2.2. Fractional c-Matching Polytope

weight of x̂ is 2we, and finally, in Figure 2.4c the weight of x is 1
2we, while the

weight of x̂ is 3
2we. A fractional odd cycle Ĉ in x̂ maps to a fractional cycle C

in x with length |Ĉ|/3 (three edges in Ĉ map to one edge in C), which is odd.

Suppose there is a fractional odd cycle C in x such that there is an unsaturated
vertex u on C. Then there is a copy ui of u in Ĝ that is exposed. Let e = uv be
an edge on C. We can then change x̂ as follows: set x̂uiev = 1, and alternate
round Ĉ exposing ev. One can check using complementary slackness that
this gives a new maximum-weight matching in Ĝ, that is basic and has less
fractional odd cycles than x̂, a contradiction. So all vertices on fractional odd
cycles in x are saturated.

Now suppose that there is some vertex u that is on at least two fractional odd
cycles in x. Then there are at least two copies ui and uj of u that are both
on a fractional odd cycle in x̂. Let ak and bl be such that x̂uiak

= x̂ujbl =
1
2 .

Now set these to zero, and instead set x̂uibl = x̂ujak
= 1

2 . This merges the
two fractional odd cycles into one fractional even cycle, and does not change
the weight of x̂ (ŵuiak

= ŵujak
and ŵujbl = ŵuibl). To make x̂ basic again,

we remove this fractional even cycle by alternatingly decreasing/increasing x̂
on the edges of the cycle to zero/one. One can check using complementary
slackness that this gives a new maximum-weight matching in Ĝ, that is basic
and has less fractional odd cycles than x̂, a contradiction. So all fractional
odd cycles in x are vertex-disjoint.

Hence we find that x is basic. It follows that |Cx| = |Cx̂|.
Note that given an x, we can similarly translate it into x̂, such that ŵ⊤x̂ =
w⊤x + w(E) and |Cx̂| = |Cx|. Hence, νcf (G) = νf (Ĝ) − w(E) and γ(G) =

γ(Ĝ). So, x is our basic maximum-weight fractional c-matching in G with
|Cx| = γ(G).

23

Chapter 3

Problem Definition and Results

In this dissertation we look at two types of matching games: Network Bargain-
ing Games (NBG) and Cooperative Matching Games (CMG). In Section 3.1
we formally introduce network bargaining games, and we introduce the stabi-
lization problem that we study in Part II. In Section 3.2 we formally introduce
cooperative matching games, and we introduce the two problems that we study
in Part III. Finally, in Section 3.3 we discuss the connection between network
bargaining games and cooperative matching games.

3.1 Network Bargaining Games

Network bargaining games were introduced by Kleinberg and Tardos [34] as a
generalization of Nash’s 2-player bargaining solution [41]. This work by Klein-
berg and Tardos [34] is quite popular, and network bargaining games have
been studied from a lot of perspectives since then. Bateni et al. [7] intro-
duced capacitated network bargaining games as a generalization of network
bargaining games. Instances of network bargaining games are described by a
graph G = (V,E) with edge weights w ∈ RE

≥0 (and vertex capacities c ∈ ZV
≥0),

where the vertices and the edges model the players and their potential inter-
actions, respectively. We next formulate network bargaining games formally,
on unit-capacity and capacitated graphs.

In a unit-capacity instance of NBG, each player can enter in a deal with at
most one of their neighbors in the graph, and together they agree on how to
split the value of the deal, which is given by the weight of the corresponding
edge. Hence, an outcome is naturally associated with a matching M ⊆ E in G
representing the deals, and an allocation vector y ∈ RV

≥0 with yu + yv = wuv

if uv ∈M , and yv = 0 if v is exposed by M . The outside option of a player is
the maximum profit a player can receive by abandoning their current deal (if

25

Chapter 3. Problem Definition and Results

they are in a deal currently) and forming a new deal with a different neighbor,
under the condition that this does not decrease the profit of that neighbor.
Formally, the outside option of player u with respect to the outcome (M,y) is
defined as

αu(M,y) = max

{
0, max

v:uv∈E\M
{wuv − yv}

}
.

We omit (M,y) when it is clear from context. An outcome (M,y) is stable if it
satisfies yv ≥ αv for all players v ∈ V , which means no player has an incentive
to deviate from (M,y).

Observation 3.1. The definition of outcome reflects the complementary
slackness conditions in Equation (2.1): yu + yv = wuv if uv ∈ M , that is,
if xuv ̸= 0, and yv = 0 if v is exposed by M , that is, if x(δ(v)) ̸= 1. Moreover,
the definition of stable reflects the vertex cover constraints for edges not in
M : yv ≥ αv ≥ wuv − yu for all u such that uv ∈ E \M . It follows that in a
stable outcome (M,y), M is a maximum-weight matching and y is a minimum
fractional vertex cover.

In a capacitated instance of NBG, each player v can instead enter in a deal with
at most cv of their neighbors. In this case an outcome is naturally associated
with a c-matching M in G, and a vector a ∈ R2E

≥0 with auv + avu = wuv

if uv ∈ M and auv = avu = 0 otherwise. The allocation vector y ∈ RV
≥0

associated with the outcome (M,a) represents the total value acquired by the
vertices, formally defined as yv =

∑
u:uv∈E avu for all v ∈ V . The outside

option is now defined as

αu(M,a) = max

{
0, max

v:uv∈E\M

{
wuv − 1[dMv = cv] min

w:vw∈M
avw

}}
,

where 1[dMv = cv] equals 1 if dMv = cv, and 0 otherwise. The difference with
the unit-capacity outside option is that now we have to check if v has already
used all of its capacity. Because in that case, v needs to abandon one of its
deals to be able to form a new deal with u. So, to make sure that v’s profit
does not decrease, v needs to get at least minw:vw∈M avw. But if v has not yet
used all of its capacity, then v is free to form another deal, and so v’s profit
will not decrease if v gets nothing from the deal with u. An outcome (M,a)
is stable if it satisfies auv ≥ αu and avu ≥ αv for all deals uv ∈M and αu = 0
if u is unsaturated.

3.1.1 Stabilization

As we will discuss in more detail in Section 3.3, the existence of a stable
outcome for the network bargaining game on a graph G is equivalent to the

26

3.1. Network Bargaining Games

property νf (G) = ν(G) in unit-capacity graphs, and the property νcf (G) =
νc(G) in capacitated graphs. We say that a graph (G,w, 1) is stable if νf (G) =
ν(G), and a graph (G,w, c) is stable if νcf (G) = νc(G). Recall that γ(G) =
minx∈X |Cx| denotes the minimum number of fractional odd cycles. As already
noted by Koh and Sanità [36] for the unit-capacity case, we have the following.

Proposition 3.1. A graph (G,w, c) is stable (νcf (G) = νc(G)) if and only if
γ(G) = 0.

From this proposition it easily follows that not all graphs are stable, for ex-
ample, odd cycles. The stabilization problem follows naturally: minimally
modifying a graph to turn it into a stable graph, that is, such that the mod-
ified graph satisfies νcf (G) = νc(G). Or equivalently: minimally modifying a
graph to ensure the existence of a stable outcome for the network bargain-
ing game on the modified graph. Stabilization problems attracted a lot of
attention in the literature in the past years, see for example [1, 8, 9, 11, 12,
13, 30, 36, 37]. The modifications that we consider are removing vertices,
decreasing the capacity of vertices, and removing edges. In the context of net-
work bargaining games, these modifications correspond with blocking players
completely, blocking part of the capacity of players, and blocking interactions
between players, respectively. Previous work studied these modifications on
unit-capacity graphs. We instead study them on capacitated graphs.

In Part II of this dissertation we study the following stabilization problems.

The vertex-stabilizer problem: Given a graph G = (V,E) with edge
weights w ∈ RE

≥0 and vertex capacities c ∈ ZV
≥0, find a minimum-cardinality

subset S ⊆ V of vertices such that νcf (G \ S) = νc(G \ S).
The capacity-stabilizer problem: Given a graph G = (V,E) with edge
weights w ∈ RE

≥0 and vertex capacities c ∈ ZV
≥0, find a minimum-cardinality

multiset S of vertices V such that νcf (G[cS − 1]) = νc(G[cS − 1]).

The edge-stabilizer problem: Given a graph G = (V,E) with edge weights
w ∈ RE

≥0 and vertex capacities c ∈ ZV
≥0, find a minimum-cardinality subset

F ⊆ E of edges such that νcf (G \ F) = νc(G \ F).

The M-vertex-stabilizer problem: Given a graph G = (V,E) with edge
weights w ∈ RE

≥0 and vertex capacities c ∈ ZV
≥0, and a c-matching M in G, find

a minimum-cardinality subset S ⊆ V of vertices such that νcf (G\S) = νc(G\S)
and M is a maximum-weight c-matching in G \ S.
The M-edge-stabilizer problem: Given a graph G = (V,E) with edge
weights w ∈ RE

≥0 and vertex capacities c ∈ ZV
≥0, and a c-matching M in G, find

a minimum-cardinality subset F ⊆ E of edges such that νcf (G\F) = νc(G\F)
and M is a maximum-weight c-matching in G \ F .

27

Chapter 3. Problem Definition and Results

We refer to the subsets we are looking for in the above problems as ...-
stabilizers: for example, a subset S ⊆ V such that νcf (G \ S) = νc(G \ S) and
M is a maximum-weight c-matching in G \S, is called an M -vertex-stabilizer.

In Chapter 4 we discuss the vertex-, capacity- and edge-stabilizer problem,
and in Chapter 5 we discuss the M -vertex- and M -edge-stabilizer problem.

Below we discuss the known results, and our results, for these problems. We
also discuss related work and open problems.

Known Results: Vertex-Stabilizer. Ahmadian et al. [1] and Ito et al. [30]
discuss the vertex-stabilizer problem on unit-weight, unit-capacity graphs.
Both prove that the vertex-stabilizer problem in this setting is polynomial-
time solvable. In addition, Ahmadian et al. [1] state that for any minimal-
cardinality vertex-stabilizer S ⊆ V , we have ν(G \ S) = ν(G), that is, S does
not decrease the cardinality of a maximum matching. Koh and Sanità [36]
generalize these results to weighted graphs. In particular, they state that
the problem is polynomial-time solvable, and that the set S ⊆ V that they
compute satisfies ν(G \ S) ≥ 2

3ν(G).

Our Results: Vertex- and Capacity-Stabilizer. We prove that on unit-
weight, capacitated graphs the vertex-stabilizer problem is NP-hard, and even
APX-hard already when c ≤ 3. We give stronger inapproximability results for
arbitrary capacity values. These results are presented in Section 4.1.

Another way to generalize the vertex-stabilizer problem to capacitated graphs,
is by reducing the capacity of vertices: When a vertex has capacity one, re-
ducing its capacity by one is the same as removing the vertex. We extend
the algorithm of Koh and Sanità [36] to capacitated graphs by reducing the
capacity of vertices, and show that νc(G[cS − 1]) ≥ 2

3ν
c(G) is still satisfied

for the computed set S ⊆ V . Our solution reduces the capacity of each ver-
tex by at most one, which is fair in terms of the network bargaining game,
as no player will have its capacity dramatically reduced compared to others.
Restricted to unit-weight graphs (still capacitated), we generalize the result of
Ahmadian et al. [1], that any minimal-cardinality capacity-stabilizer S satis-
fies νc(G[cS − 1]) = νc(G), that is, S does not decrease the cardinality of a
maximum matching. This, in particular, also holds for the set S computed by
our algorithm. These results are presented in Section 4.3.

Besides extending the previous known results to the capacitated setting, what
we find interesting are the new arguments we rely on in our proofs. Previous
results mainly used combinatorial techniques. We here instead rely on (new)
polyhedral arguments and, in particular, on the notion of circuits of a polytope,
which are a key concept in optimization. The main algorithmic idea behind

28

3.1. Network Bargaining Games

the algorithm of Koh and Sanità [36] is the fact that the minimum number
of fractional odd cycles in the support of a basic maximum-weight fractional
matching provides a lower bound on the size of a stabilizer. Interestingly, our
polyhedral view point allows us not only to deal more broadly with capacitated
instances, but also to simplify some of the cardinal arguments previously used
in the literature: in particular, our lower bound proof is more general and much
simpler than the corresponding one in Koh and Sanità [36] for the unit-capacity
setting. The (new) polyhedral tools that we use are presented in Section 4.2.
Even though we apply these polyhedral tools only to the fractional c-matching
polytope, our main result applies to polytopes in general.

Known Results: Edge-Stabilizer. Bock et al. [11] discuss the edge-sta-
bilizer problem on unit-weight, unit-capacity graphs. They state that this
problem is NP-hard, and no efficient (2 − ε)-approximation algorithm exists
for any ε > 0 assuming the Unique Games Conjecture (Khot [33]). In ad-
dition, they state that for any minimum-cardinality edge-stabilizer F ⊆ E,
we have ν(G \ F) = ν(G), that is, F does not decrease the cardinality of a
maximum matching. Koh and Sanità [36] discuss the edge-stabilizer problem
on weighted, unit-capacity graphs. They state that there is no constant factor
approximation algorithm possible, unless P = NP . In addition, they give an
O(∆)-approximation algorithm, where ∆ is the maximum degree in the graph.

Our Results: Edge-Stabilizer. We extend the O(∆)-approximation algo-
rithm of Koh and Sanità [36] to capacitated graphs. Restricted to unit-weight
graphs (still capacitated), we generalize the result of Bock et al. [11], that any
minimum-cardinality edge-stabilizer F ⊆ E satisfies νc(G \ F) = νc(G), that
is, F does not decrease the cardinality of a maximum matching. We note that
in weighted, capacitated graphs, there always exists an edge-stabilizer F ⊆ E
that satisfies νc(G \ F) = νc(G), but that the size of such an edge-stabilizer
could be much larger than the size of a minimum edge-stabilizer. These re-
sults are presented in Section 4.4. Here we also rely on the polyhedral tools
presented in Section 4.2.

Known Results: M-Vertex-Stabilizer. Ahmadian et al. [1] discuss the
M -vertex-stabilizer problem on unit-weight, unit-capacity graphs, and they as-
sume the given matching is maximum. They state that the M -vertex-stabilizer
problem in this setting is polynomial-time solvable. Koh and Sanità [36] state
that the M -vertex-stabilizer problem on unit-weight, unit-capacity graphs
is NP-hard, and no efficient (2 − ε)-approximation algorithm exists for any
ε > 0 assuming the Unique Games Conjecture (Khot [33]). Furthermore, they

29

Chapter 3. Problem Definition and Results

give an efficient 2-approximation algorithm on weighted, unit-capacity graphs,
which is even an exact algorithm if the given matching has maximum weight.

Our Results: M-Vertex-Stabilizer. We extend the 2-approximation/
exact algorithm of Koh and Sanità [36] to capacitated graphs, by building
upon an auxiliary construction of Farczadi et al. [21]. These results are pre-
sented in Section 5.1.

Known Results: M-Edge-Stabilizer. Bock et al. [11] discuss theM -edge-
stabilizer problem on unit-weight, unit-capacity graphs, and they assume the
given matching is maximum. They state that the M -edge-stabilizer problem
in this setting is NP-hard, and no efficient (2 − ε)-approximation algorithm
exists for any ε > 0 assuming the Unique Games Conjecture (Khot [33]).
Furthermore, they give an efficient 2-approximation algorithm.

Our Results: M-Edge-Stabilizer. We generalize the 2-approximation al-
gorithm of Bock et al. [11] to capacitated graphs and arbitrary given matchings.
On the other hand, we show that a straightforward generalization of their 2-
approximation algorithm to weighted graphs does not work. These results are
presented in Section 5.2.

Related Work. Stabilizer problems have been studied extensively in the
literature, see Chandrasekaran [12] for a survey on the subject. We have
already mentioned the stabilizer variants that we study in this dissertation,
but there are more. Here we mention some known results of other stabilizer
variants.

Ahmadian et al. [1] and Ito et al. [30] also discuss a vertex-weighted variant of
the vertex-stabilizer problem, on unit-(edge-)weighted, unit-capacity graphs.
Here each vertex has a nonnegative weight, which represents the cost of re-
moving this vertex. Both show that this problem is NP-hard.

In addition, Ito et al. [30] study stabilizing by adding vertices or edges, on unit-
weight, unit-capacity graphs. They show both problems can be solved in poly-
nomial time. They also consider an edge-weighted variant of the edge-addition-
stabilizer problem, where each possible edge has a nonnegative weight, which
represents the cost of adding this edge. They show that this problem is NP-
hard.

Chandrasekaran et al. [13] study the minimum fractional additive stabilizer
problem. In this problem one is given a unit-weight, unit-capacity graph G =
(V,E), and the goal is to find a vector c ∈ RE

≥0 with minimum
∑

e∈E ce such

30

3.2. Cooperative Matching Games

that the graph G with edge weights 1+ c is stable. They give hardness results
for this problem, and a nearly matching approximation algorithm.

A slightly different, but related problem is the problem of finding the minimum
number of blocking pairs. For a unit-capacity network bargaining game and
allocation y, a blocking pair is a pair uv ∈ E of players such that yu+yv < wuv.
Biró et al. [9] show that this problem is NP-complete, even on unit-weight
graphs. Könemann et al. [37] give an approximation algorithm for finding
a minimum number of blocking pairs in sparse graphs. The blocking value
of a blocking pair uv ∈ E is wuv − yu − yv. Biró et al. [8] show that, for
weighted graphs, finding the minimum number of blocking pairs, and finding
the minimum total blocking value, are NP-complete problems. In general,
the set of all blocking pairs of an allocation y is not an edge-stabilizer, as for
example pointed out by Könemann et al. [37]. Even so, the hardness proof
of Biró et al. [8] does work for edge-stabilizers, hence also proving that the
edge-stabilizer problem is NP-complete on weighted graphs.

Open Problems. Koh and Sanità [36] show that the vertex-stabilizer prob-
lem is polynomial-time solvable if c = 1, and we show that it is APX-hard
already when c ≤ 3. It remains to determine the hardness of the vertex-
stabilizer problem for c ≤ 2.

We note that there always exists a weight-preserving edge-stabilizer, but that
in general, minimum edge-stabilizers are not weight-preserving. Koh and
Sanità [36] show that there is no constant factor approximation algorithm
possible for the edge-stabilizer problem, unless P = NP . Their proof also
applies to the weight-preserving edge-stabilizer problem. This leaves finding a
nonconstant approximation algorithm for the weight-preserving edge-stabilizer
problem.

We show that, for the M -edge-stabilizer problem, a straightforward gener-
alization of the 2-approximation algorithm of Bock et al. [11] to weighted
graphs does not work. It remains to find an approximation algorithm, and per-
haps a stronger hardness result, for the M -edge-stabilizer problem on weighted
graphs.

3.2 Cooperative Matching Games

Cooperative matching games were introduced in the seminal paper of Shapley
and Shubik 50 years ago [50], and have been widely studied since then. Co-
operative matching games have also been studied in the capacitated setting,
for example by Biró et al. [10]. Instances of cooperative matching games are
described by a graph G = (V,E) with edge weights w ∈ RE

≥0 (and vertex

31

Chapter 3. Problem Definition and Results

capacities c ∈ ZV
≥0), where the vertices model the players. The value of a

maximum-weight (c-)matching, ν(G) (νc(G)), is the total value that players
can collectively accumulate. We next formulate cooperative matching games
formally, on unit-capacity and capacitated graphs.

In a unit-capacity instance of CMG, each player can participate in one coalition
with a subset of other players. If a subset of players S ⊆ V forms a coalition,
they can distribute the value of a maximum-weight matching in G[S] (ν(G[S]))
among themselves. We define an allocation vector y ∈ RV

≥0, where yv is the
value allocated to player v ∈ V . An allocation is stable if

∑
v∈S yv ≥ ν(G[S])

for all S ⊆ V , which means no subset of players has an incentive to deviate
from the current set of coalitions, to form a coalition on their own. We are
interested in the core of CMG, which consists of all stable allocation vectors
when the grand coalition (S = V) is formed. The core is formally defined as

core(G) =

{
y ∈ RV

≥0 :
∑
v∈S

yv ≥ ν(G[S])∀S ⊆ V,
∑
v∈V

yv = ν(G)

}
.

In a capacitated instance of CMG the value of subsets is instead given by
maximum-weight c-matchings. The above applies by replacing all ν by νc.

We sometimes refer to unit-capacity cooperative matching games as matching
games, and to capacitated cooperative matching games as c-matching games.

In Part III of this dissertation we consider two problems that involve coop-
erative matching games. We introduce these two problems in the next two
sections.

3.2.1 Core Separation of 2-Matching Games

In Chapter 6 we consider 2-matching games, which are c-matching games with
cv ≤ 2 for all players v ∈ V . We are interested in the problem of separating
over the core:

Determine if a given allocation y ∈ RV belongs to the core, or find a coalition
that violates the corresponding constraint in

y(S) ≥ νc(G[S]) for all S ⊂ V, y(V) = νc(G). (3.1)

Known Results. Separating over the core of matching games is solvable
in linear time; given y ∈ RV

≥0 with y(V) = ν(G), it is equivalent to checking
if yu + yv ≥ wuv for all edges uv ∈ E. In fact, the core admits a compact
LP formulation: y is in the core if and only if y is a minimum fractional

32

3.2. Cooperative Matching Games

vertex cover with total value ν(G). This was first shown for bipartite graphs
by Shapley and Shubik [50], and later generalized to arbitrary graphs by for
example Deng et al. [17] and Paulusma [42]. Differently, Biró et al. [10] show
that separating over the core of c-matching games (which they call multiple
partners matching games) is co-NP-complete, even on bipartite graphs with
c = 3 and w = 1 (see Theorem 13 in Biró et al. [10]). On the other hand,
2-matching games seem to still behave nicely: they state that separating over
the core of 2-matching games is solvable in polynomial time (see Theorem 12
in Biró et al. [10]). However, their proof contains a flaw.

Our Results. Our first result is to fix the flaw in the proof of Theorem 12
in Biró et al. [10], hence showing that separating over the core of 2-matching
games is solvable in polynomial time. We show this in Section 6.1. Hav-
ing a polynomial-time separation oracle over the (convex) set of core alloca-
tions, implies that we can optimize over the corresponding polytope in polyno-
mial time via the ellipsoid method (Grötschel et al. [25], Grötschel et al. [26],
Khachiyan [32]). A natural question is then whether there exists a compact ex-
tended formulation for it. In fact, there exist polytopes for which a polynomial-
time separation oracle is known, but no compact extended formulation exists,
such as the perfect matching polytope (Rothvoss [45]). Our second result is a
positive answer to this question: there exists a compact extended formulation
that describes the core of 2-matching games. We show this in Section 6.2.

Open Problems. The compact LP formulation for the core of matching
games implies that the core is nonempty if and only if the graph is stable.
(This relation is explored more in Section 3.3.) Consequently, the stabilization
results for unit-capacity graphs also apply to matching games, in the sense
that they ensure a nonempty core. For c-matching games, having a nonempty
core is not equivalent to stability of the graph, which leaves the problem of
stabilizing c-matching games. And perhaps our compact extended formulation
can be exploited for stabilizing 2-matching games.

3.2.2 Two-Stage Assignment Games

In Chapter 7 we study a two-stage stochastic version of the assignment game.
The assignment game is a matching game on a bipartite graph. A two-stage
problem is a problem split in two stages, where the instance can change be-
tween the stages, and the objective is typically to minimize the difference
between the solutions of the two stages. In a two-stage stochastic problem,
the second-stage instance is sampled from a probability distribution. Studying
combinatorial problems in the two-stage setting is a popular area of research

33

Chapter 3. Problem Definition and Results

(see for example [4, 14, 27, 39, 44, 51, 52]). Recently, this setting has been
studied for prominent game theory problems such as stable matchings (Bampis
et al. [5], Faenza et al. [20]). In particular, Faenza et al. [20] study a two-stage
stochastic stable matching problem where in the second stage the set of ver-
tices changes. It seems natural to study this setting applied to other promi-
nent games involving the structure of matchings. We here study this two-stage
stochastic setting in the context of cooperative matching games. We focus on
assignment games, that is, cooperative matching games on bipartite graphs,
because they are guaranteed to have a nonempty core.

Given a first-stage assignment game instance, in a second stage we can have
some players leaving the game, new players joining the game, and/or some
additions and removals in the edge set of the original instance. Formally, we
represent this as having a new graph describing the instance in the second
stage, that can be any bipartite graph as long as it keeps the same bipartition
as the first-stage graph for the vertices that stay in the game. The second-stage
instance is sampled from some distribution D. We denote the starting (first-
stage) graph by G0 = (V0, E0), and for any second-stage scenario S ∼ D, we
denote the corresponding graph by GS = (VS , ES). We want to compute a core
allocation in both stages. The goal is to minimize the expected total loss of
the remaining players (that is, decrease in allocation value). Mathematically,
the two-stage stochastic assignment game is

min
y∈core(G0)

ES∼D

[
min

yS∈core(GS)

∑
v∈V0∩VS

λv

[
yv − ySv

]+]
, (2SAG)

where [x]+ = max {0, x}, and λ ≥ 0 is the dissatisfaction of players per unit
loss of allocation value.

Our results. We first consider the setting where the probability distribution
D is given explicitly in Section 7.1. We observe that the problem can be
modeled as an LP, and hence it is solvable in time polynomial in the size of
the graph and the number of second-stage scenarios. Interestingly, we prove
that the feasible region is an integral polyhedron. For this, we show that the
problem can be modeled as a flow problem in a suitable auxiliary graph, and
then exploit duality. We leverage this integrality result in two ways.

First, we exploit it when considering a probability distribution given implicitly,
as described in Section 7.2. The integrality result allows us to mimic the
arguments used in Faenza et al. [20] for two-stage stable matching, hence
showing that in this setting the problem is computationally hard to solve, but
it can be approximated using the well-known sample average approximation
(SAA) method (Kleywegt et al. [35]).

34

3.3. Connection Between the Games

Second, the integrality property reveals a close relationship with the well-
known multistage vertex cover problem, which we discuss in Section 7.3. It is
known that the multistage vertex cover problem is NP-hard even with only two
stages and a bipartite graph at each stage (Fluschnik et al. [23]). However,
as a consequence of our findings, we can show that the problem becomes
polynomial-time solvable when the bipartition remains consistent across all
stages.

3.3 Connection Between the Games

As briefly touched upon in Chapter 1, network bargaining games and coopera-
tive matching games seem quite related. And, indeed, they are. In this section
we explore the connection between the existence of stable outcomes for NBG,
the existence of stable allocations for CMG (nonempty core), and stability of
the graph, that is, the property νf (G) = ν(G) in unit-capacity graphs, and the
property νcf (G) = νc(G) in capacitated graphs. In particular, we show that
these three properties are equivalent in unit-capacity graphs, and that this
equivalence does not completely extend to capacitated graphs. We conclude
this section with a remark about what consequences this equivalence has for
the stabilization problem.

Theorem 3.1. Given a graph (G,w, 1), the following are equivalent:

(i) G is stable (νf (G) = ν(G)),

(ii) there exists a stable outcome for the network bargaining game on G,

(iii) there exists an allocation in the core of the cooperative matching game
on G.

The first part of this equivalence, (i) ⇐⇒ (ii), follows from Kleinberg and
Tardos [34], and the second part, (i) ⇐⇒ (iii), is given in Theorem 1 in Deng
et al. [17]. We also give an alternative proof.

Proof. ((i)⇒ (ii)) Since G is stable, we have ν(G) = τf (G). That means there
exists a maximum-weight matching M and a minimum fractional vertex cover
y that both have total value ν(G). We show that (M,y) is a stable outcome.
Let x be the indicator vector of M , then x is a maximum-weight fractional
matching. Complementary slackness tells us that xuv = 0 or yu+yv = wuv for
all edges uv ∈ E, and yv = 0 or x(δ(v)) = 1 for all vertices v ∈ V . It follows
that, if uv ∈ M , that is, if xuv = 1, then yu + yv = wuv, and if v is exposed,
that is, if x(δ(v)) = 0, then yv = 0. So (M,y) is an outcome. Furthermore,
because y is a fractional vertex cover, we have yu + yv ≥ wuv for all edges
uv ∈ E. Hence, (M,y) is a stable outcome.

35

Chapter 3. Problem Definition and Results

((ii) ⇒ (i)) Let (M,y) be a stable outcome. Then y is a fractional vertex
cover, as yu + yv ≥ wuv for all edges uv ∈ E and y ≥ 0. Thus, τf (G) ≤ 1⊤y.
Furthermore, we know that (M,y) satisfies yu+yv = wuv if uv ∈M and yv = 0
is v is exposed. This implies

∑
v∈V yv = w(M). Finally, M is a matching,

so w(M) ≤ ν(G). Combining all of this, we find that τf (G) ≤ ν(G), which
implies that G is stable.

((i)⇒ (iii)) Since G is stable, we have ν(G) = τf (G). That means there exists
a fractional vertex cover y with total value ν(G). We show that y is in the
core. First note that y ∈ RV

≥0 is an allocation, and that the total value of y is
ν(G). Let S ⊆ V , and let M be a maximum-weight matching in G[S]. Note
that V (M) ⊆ S. We have

ν(G[S]) =
∑

uv∈M

wuv ≤
∑

uv∈M

yu + yv =
∑

v∈V (M)

yv ≤
∑
v∈S

yv,

so y is stable, and hence, y is in the core.

((iii) ⇒ (i)) Let y be an allocation in the core. Then, y ∈ RV
≥0,

∑
v∈S yv ≥

ν(G[S]) for all S ⊆ V , and
∑

v∈V yv = ν(G). If we choose S = {u, v} for
any edge uv ∈ E, the inequality tells us that yu + yv ≥ wuv. Hence, y is a
fractional vertex cover of total value of ν(G). It follows that τf (G) ≤ ν(G),
which implies that G is stable.

This equivalence does not completely extend to capacitated graphs: We still
have (i) ⇐⇒ (ii), proven in Corollary 3.3 in Bateni et al. [7], and (i) =⇒
(iii), which follows from Lemma 3.4 in Bateni et al. [7]1. However, (iii) ≠⇒
(i), (ii), which was shown using an example in Theorem 11 in Biró et al. [10]2.
We again also give an alternative proof.

Theorem 3.2. Given a graph (G,w, c), and the following statements:

(i) G is stable (νcf (G) = νc(G)),

(ii) there exists a stable outcome for the network bargaining game on G,

(iii) there exists an allocation in the core of the cooperative matching game
on G,

we have (i) ⇐⇒ (ii) and (i) =⇒ (iii), but (iii) ≠⇒ (i), (ii).

Proof. ((i) ⇒ (ii)) Since G is stable, we have νc(G) = τ cf (G). Let M be a
maximum-weight c-matching with indicator vector x, and let (y, z) be a mini-
mum fractional vertex cover. Because G is stable, they satisfy complementary

1Bateni et al. [7] assume that the graph is bipartite, but bipartiteness is not needed in
their proof.

2Biró et al. [10] actually investigates the relation between CMG and the stable fixtures
problem with payments, but the latter turns out to be the same as NBG.

36

3.3. Connection Between the Games

slackness (see Equation (2.2)). We define a ∈ R2E
+ as auv = yu + 1

2zuv if
xuv = 1 and auv = 0 otherwise. We show that (M,a) is a stable outcome. By
definition we already have auv = avu = 0 if uv /∈M . Let uv ∈M , we have

auv + avu = yu + 1
2zuv + yv +

1
2zvu = yu + yv + zuv = wuv,

where the last equality holds by complementary slackness. Hence, (M,a) is
an outcome. We verify (M,a) is stable. Consider auv for some edge uv ∈ M .
We make a distinction between three cases:

(1) αu = 0,

(2) αu = wuw for some w such that uw /∈M and w unsaturated,

(3) αu = wuw − awx for some w, x such that uw /∈ M , wx ∈ M and w
saturated.

In case (1) we clearly satisfy auv ≥ αu. In case (2), we have yu+yw+zuw ≥ wuw

by feasibility of (y, z) and yw = 0 and zuw = 0 by complementary slackness.
Hence, yu ≥ wuw. Then,

auv = yu + 1
2zuv ≥ yu ≥ wuw = αu.

In case (3) we have yu + yw + zuw ≥ wuw by feasibility of (y, z), and zuw = 0
by complementary slackness. Hence, yu + yw ≥ wuv. Then,

αu = wuw − awx ≤ yu + yw − (yw + 1
2zwx) = yu − 1

2zwx

≤ yu ≤ yu + 1
2zuv = auv.

In all cases we have auv ≥ αu. Now consider αu for some unsaturated vertex
u. Since M is a maximum-weight matching, we have that all vertices v such
that uv /∈M must be saturated. Hence,

αu = max

(
0, max

uv/∈M
wuv − 1

[
dMv = cv

]
min

vw∈M
avw

)
,

= max

(
0, max

uv/∈M
wuv − min

vw∈M
yv +

1
2zvw

)
,

= max

(
0, max

uv/∈M
wuv − yv − 1

2 min
vw∈M

zvw

)
.

We have yu + yv + zuv ≥ wuv by feasibility, and yu = 0 and zuv = 0 by
complementary slackness, for any uv /∈ M . Hence, yv ≥ wuv, or equivalently,
wuv − yv ≤ 0 for any uv /∈M . Then,

wuv − yv − 1
2 min
vw∈M

zvw ≤ − 1
2 min
vw∈M

zvw ≤ 0,

37

Chapter 3. Problem Definition and Results

for any uv /∈ M . Consequently, αu = max{0,≤ 0} = 0, and so (M,a) is a
stable outcome.

((ii) ⇒ (i)) Let (M,a) be a stable outcome. Let x be the indicator vector of
M , and define (y, z) as follows:

yu =

{
minuv∈M auv if dMu = cu,

0 otherwise,
zuv =

{
wuv − yu − yv if uv ∈M,

0 otherwise.

Observe that x and (y, z) are defined in such a way that they satisfy comple-
mentary slackness (see Equation (2.2)). Since x is the indicator vector of M ,
it is feasible for νc(G), and hence also for νcf (G). If in addition (y, z) is feasi-
ble for τ cf (G), then by complementary slackness, x and (y, z) form an optimal

primal-dual pair for νcf (G) and τ cf (G). Therefore, w⊤x = νcf (G) ≥ νc(G) ≥
w(M) = w⊤x, which implies G is stable. It remains to verify that (y, z) is a
fractional vertex cover.

By definition we have y ≥ 0. Let uv ∈M , then we have

yu + yv ≤ min
uw∈M

auw + min
vw∈M

avw ≤ auv + avu = wuv.

The first inequality holds by definition of y and the last equality by definition
of outcome. So, we have yu + yv ≤ wuv for all uv ∈M . It follows that z ≥ 0.
To check the constraints yu + yv + zuv ≥ wuv for all uv ∈ E, we make a
distinction between three cases:

(a) uv ∈M ,

(b) uv /∈M , dMu = cu and dMv = cv,

(c) uv /∈M , dMu = cu and dMv < cv.

If uv /∈ M , at least one of u and v is saturated, because M is a maximum-
weight c-matching. The case that only v is saturated is similar to case (c),
and can be argued in the same way. In case (a) the constraint is satisfied, and
even holds with equality, by construction of z. In case (b) we have

yu + yv + zuv = min
uw∈M

auw + min
vx∈M

avx ≥ αu + αv ≥ wuv − yv + wuv − yu,

where the first inequality holds because (M,a) is stable. We can rewrite this
inequality as 2(yu + yv) + zuv ≥ 2wuv. By definition zuv = 0, so we can divide
both sides by two to find that the constraint is satisfied. In case (c) we have

yu + yv + zuv = min
uw∈M

auw ≥ αu ≥ wuv,

where the first inequality holds because (M,a) is stable. This shows that the
constraint is also satisfied in this case. Therefore, (y, z) is a fractional vertex
cover.

38

3.3. Connection Between the Games

((i) ⇒ (iii)) Let (y, z) be optimal for τ cf (G). Since G is stable, c⊤y + 1⊤z =

νc(G). We define y∗v = cvyv +
∑

u:uv∈E
1
2zuv for all v ∈ V . We show that y∗ is

an allocation in the core. Note that y∗ ≥ 0, and
∑

v∈V y∗v = c⊤y+1⊤z = νc(G).
It remains to show that y∗ is stable. Consider any S ⊆ V . Let M be a
maximum-weight c-matching in G[S], so w(M) = νc(G[S]). We have

νc(G[S]) =
∑

uv∈M

wuv ≤
∑

uv∈M

yu + yv + zuv ≤
∑

v∈V (M)

cvyv +
∑

uv∈M

zuv,

where the first inequality holds because (y, z) is a fractional vertex cover, and
the second because on the left hand side yv is counted dMv times, and dMv ≤ cv.
Since V (M) ⊆ S, M ⊆ E(S) ⊆ E, y ≥ 0 and z ≥ 0, we have

νc(G[S]) ≤
∑
v∈S

cvyv +
∑

uv∈E(S)

zuv =
∑
v∈S

cvyv +
∑

u:uv∈E(S)

1
2zuv

 ,

≤
∑
v∈S

(
cvyv +

∑
u:uv∈E

1
2zuv

)
=
∑
v∈S

y∗v .

Hence y∗ is stable, and so y∗ is in the core.

((iii) ⇏ (i)) We prove this by giving a graph for which there is an allocation
in the core, but which is not stable. Let G be the graph given in Figure 3.1.
It is quite easy to see that νc(G) = 3 and νcf (G) = 3.5, thus G is not stable.
One can check that y = (1, 1, 1, 0) is in the core.

2 2

2 1

1 1

1 0

Figure 3.1: The graph G with unit-weights. On the left: the graph
G where the values close to the vertices indicate the capacities. Bold
edges indicate a maximum c-matching. On the right: the graph G where
the values close to the vertices indicate the allocation y. A maximum
fractional c-matching is given by xe = 1

2 for dashed edges, xe = 1
otherwise.

((iii) ⇏ (ii)) Follows directly from (iii) ≠⇒ (i) and (ii) =⇒ (i).

The next corollary follows from the proof of (ii) =⇒ (i).

Corollary 3.1. Given a graph (G,w, c), if (M,a) is a stable outcome for the
network bargaining game on G, M is a maximum-weight c-matching in G.

39

Chapter 3. Problem Definition and Results

As a consequence of Theorems 3.1 and 3.2, the stabilization problem we dis-
cussed before in Section 3.1.1 also applies to matching games, but not to
c-matching games. In particular, in unit-capacity graphs, stabilizing a graph
with the minimum number of modifications also means ensuring a nonempty
core for cooperative matching games with the minimum number of modifi-
cations. On the other hand, in capacitated graphs, stabilizing a graph with
the minimum number of modifications, does ensure a nonempty core for co-
operative matching games, but not necessarily with the minimum number of
modifications. The previously known stabilization results study stabilization
problems on unit-capacity graphs, and hence minimally stabilize both network
bargaining games and cooperative matching games. We instead consider sta-
bilization problems on capacitated graphs, and hence minimally stabilize only
network bargaining games.

40

Part II

Stabilization

Chapter 4

The Stabilizer Problem

In this chapter we discuss the vertex-, capacity- and edge-stabilizer problems,
which we defined before as follows.

The vertex-stabilizer problem: Given a graph G = (V,E) with edge
weights w ∈ RE

≥0 and vertex capacities c ∈ ZV
≥0, find a minimum-cardinality

subset S ⊆ V of vertices such that νcf (G \ S) = νc(G \ S).
The capacity-stabilizer problem: Given a graph G = (V,E) with edge
weights w ∈ RE

≥0 and vertex capacities c ∈ ZV
≥0, find a minimum-cardinality

multiset S of vertices V such that νcf (G[cS − 1]) = νc(G[cS − 1]).

The edge-stabilizer problem: Given a graph G = (V,E) with edge weights
w ∈ RE

≥0 and vertex capacities c ∈ ZV
≥0, find a minimum-cardinality subset

F ⊆ E of edges such that νcf (G \ F) = νc(G \ F).

We start by showing the hardness of the vertex-stabilizer problem in Sec-
tion 4.1. In Section 4.2 we state our polyhedral results, which we use in the
following sections. Finally, in Sections 4.3 and 4.4 we give our results for the
capacity- and edge-stabilizer problem, respectively.

Section 4.1 is based on (part of) [V1]. Sections 4.2 to 4.4 are based on [V3].

4.1 Vertex-Stabilizer

We start by proving the vertex-stabilizer problem is APX-hard already when
c ≤ 3.

Theorem 4.1. The vertex-stabilizer problem on capacitated graphs is APX-
hard, even if all edges have unit-weight and c ≤ 3.

43

Chapter 4. The Stabilizer Problem

We use a reduction from the well-known vertex cover problem.

Minimum Vertex Cover: Given a graph G = (V,E), find a vertex cover
of minimum cardinality, where a vertex cover is a set C ⊆ V such that every
edge in E is incident to at least one vertex in C.

It is known that Minimum Vertex Cover is APX-hard even in subcubic graphs,
that is, graphs where each vertex has degree at most 3 (Alimonti and Kann [2]).

Proof of Theorem 4.1. Given a graph G, we construct an instance (GΓ, 1, c) of
the vertex-stabilizer problem as follows.

For a pair of adjacent vertices u and v in G, we replace the edge e = uv with
a gadget Γuv consisting of vertices V (Γuv) and edges E(Γuv):

V (Γuv) = {u, v, e1, e2, e3, e4},
E(Γuv) = {ue1, ve1, e1e2, e2e3, e2e4, e3e4}.

See Figure 4.1 for reference. For each gadget Γuv, we set the capacities of

e3 e4

e2

e1

u v

Figure 4.1: Example of the gadget Γuv.

u and v (in GΓ) to their respective degrees in G (at most 3 by assumption).
Furthermore, we set the capacity of e1 to 2, and the capacities of e2, e3, and
e4 all to 1. The edges are set to have unit-weights. Note that c ≤ 3. The key
point is:

Claim 4.1. G has a vertex cover of size at most k if and only if (GΓ, 1, c) has
a vertex-stabilizer of size at most k.

Proof. (⇒) Let C be a vertex cover of G such that |C| ≤ k. Note that C
corresponds with a subset of the vertices in GΓ. We claim that C is a vertex-
stabilizer of GΓ. To see this, we create a c-matching and fractional vertex
cover in GΓ \ C that satisfy complementary slackness, therefore proving that
GΓ \ C is stable.

44

4.1. Vertex-Stabilizer

Note that no gadget Γuv in GΓ \C retains both u and v, because C is a vertex
cover of G. Therefore, in each gadget Γuv we can consider the c-matching

MΓuv
=

⋃
t∈{u,v,e2}\C

{e1t} ∪ {e3e4}.

Then M =
⋃

uv∈E(G) MΓuv
is a c-matching in GΓ \C, by the choice of capacity

of each vertex from V . We next construct a fractional vertex cover (ỹ, z̃),
where:

• ỹt =
1
2 for all t ∈ ∪e=uv∈E{e2, e3, e4}, and ỹt = 0 otherwise (that is, for

all t ∈ ∪e=uv∈E{e1} ∪ V),

• z̃f = 1
2 for all edges f ∈ E(GΓ) with f = e1e2 for some e = uv ∈ E,

z̃f = 1 for all edges f ∈ E(GΓ) with f = e1u, e1v, for some e = uv ∈ E,
and z̃f = 0 otherwise.

One can check that M and (ỹ, z̃) satisfy complementary slackness.

(⇐) Let S′ be a vertex-stabilizer of (GΓ, 1, c) with cardinality |S′| ≤ k. We
will find a vertex cover of G with size at most k using the following claim:

Claim 4.2. S′ contains at least one vertex from every gadget Γuv of GΓ.

Proof. Suppose for the sake of contradiction that there is a gadget Γuv of GΓ

which does not contain any vertices of S′. Since GΓ\S′ is stable, the associated
c-matching LP has an integral optimal solution x∗.

Construct a vector x as follows:

• xf = x∗
f for all f ∈ E(GΓ) \ E(Γuv),

• xue1 = xve1 = 1,

• xe1e2 = 0,

• xe2e3 = xe2e4 = xe3e4 = 1
2 .

Note that x is a feasible solution of the c-matching LP, and
∑

e∈E(Γuv)
xe = 3.5.

However, observe that
∑

e∈E(Γuv)
x∗
e ≤ 3. To see this, note that the graph has

unit-weights and each matched edge uses two capacity units (one for each of
its endpoints). The total capacity that edges in Γuv can use in any matching is

at most
∑

q∈V (Γuv)
min{cq, dE(Γuv)

q } = 7 (3 · 1 for e2, e3, e4, plus 2 for e1, plus

2 · 1 for u, v). So any matching in this gadget has value at most 7/2 = 3.5. By
integrality of x∗ we have

∑
e∈E(Γuv)

xe = 3.5 > 3 ≥∑e∈E(Γuv)
x∗
e, and hence∑

e∈E(GΓ)
xe >

∑
e∈E(GΓ)

x∗
e, which contradicts the optimality of x∗.

45

Chapter 4. The Stabilizer Problem

Let S′
uv = S′ ∩ V (Γuv) for each gadget Γuv. Create a new set T ′

uv by

T ′
uv =

{
S′
uv ∩ {u, v} if S′

uv ∩ {u, v} ≠ ∅,
{u} xor {v} (chosen arbitrarily) otherwise.

Note that ∅ ≠ T ′
uv ⊆ {u, v} by construction of T ′

uv, and by Claim 4.2. Let
T ′ =

⋃
uv∈E(G) T

′
uv. Since T ′ contains at least one of u and v for every gadget

Γuv, and does not contain any vertices in V (Γuv) \ {u, v}, then T ′ is clearly a
vertex cover in G. By construction, we have |T ′| ≤ |S′|, and so we have found
a vertex cover whose size is at most k.

The above result shows that any minimum vertex-stabilizer of (GΓ, 1, c) is of
the same size as any minimum vertex cover of G. Further, any efficient α-
approximation algorithm for the vertex-stabilizer problem would also yield an
efficient α-approximation algorithm for minimum vertex cover. Since minimum
vertex cover in subcubic graphs is APX-hard, this shows that the vertex-
stabilizer problem is APX-hard, even when c ≤ 3.

The above hardness result uses bounded capacities for the vertices (c ≤ 3). We
next show a stronger inapproximability result for arbitrarily large capacities.

Theorem 4.2. The vertex-stabilizer problem on capacitated graphs is NP-
complete, even if all edges have unit-weight. Furthermore, no efficient n1/3−ε-
approximation algorithm exists for any ε > 0, unless P = NP .

Note that, given an unstable graph (G,w, c), removing all vertices (but two)
trivially yields a stable graph. This gives a (trivial) n-approximation algorithm
for the vertex-stabilizer problem. The theorem above essentially implies that
one cannot hope for a much better approximation. To prove it, we use:

Minimum Independent Dominating Set (MIDS): Given a graph G =
(V,E), compute a minimum-cardinality subset S ⊆ V that is independent (for
all uv ∈ E at most one of u and v is in S) and dominating (for all v ∈ V at
least one u ∈ N+(v) is in S).

There is no efficient n1−ε-approximation for any ε > 0 for the MIDS problem,
unless P = NP (Corollary 3 in Halldórsson [28]).

Proof of Theorem 4.2. The decision variant of the problem asks to find a
vertex-stabilizer of size at most k. This problem is in NP, since if a ver-
tex set S is given, it can be verified in polynomial time if |S| ≤ k and if
νc(G \ S) = νcf (G \ S). We prove the NP-hardness and approximation factor
by giving an approximation-preserving reduction from the MIDS problem.

46

4.1. Vertex-Stabilizer

Let G = (V,E) be an instance of the MIDS problem. For v ∈ V , we define the
gadget Γv by

V (Γv) = N+(v) ∪ {v1, v2, v3, v4} ,
E(Γv) =

{
uv1 : u ∈ N+(v)

}
∪ {v1v2, v2v3, v3v4, v2v4} .

For e = uv ∈ E and i ∈ {1, . . . , n}, we define the gadget Γi
uv by

V (Γi
uv) =

{
u, v, ei1, e

i
2, e

i
3, e

i
4, e

i
5

}
,

E(Γi
uv) =

{
uei1, ve

i
1, e

i
1e

i
2, e

i
1e

i
3, e

i
3e

i
4, e

i
4e

i
5, e

i
3e

i
5

}
.

See Figure 4.2 for an example of these gadgets. Now let G′ be defined as the

v3 v4

v2

v1

v · · · N(v)

(a) Gadget Γv.

ei4 ei5

ei3ei2
ei1

u v

(b) Gadget Γi
uv.

Figure 4.2: Examples of gadgets.

union of all Γv and all Γi
uv, such that vertices from V overlap. We set the

capacity as follows: cv = d
E(G′)
v = (n + 1)dEv + 1 for all v ∈ V , cv1 = dEv + 1

for all v ∈ V , cei1 = cei3 = 2 for ei1, e
i
3 ∈ V (Γi

uv) for all e = uv ∈ E and
i ∈ {1, . . . , n}, and cv = 1 for all remaining v ∈ V (G′). All edges are set to
have unit-weight. The key point is:

Claim 4.3. G has an independent dominating set of size at most k if and only
if (G′, 1, c) has a vertex-stabilizer of size at most k.

Proof. (⇒) Let S be an independent dominating set of G of size k. The
vertices in S naturally correspond with vertices in G′. We show that S is a
vertex-stabilizer of (G′, 1, c).

We define a c-matchingM and fractional vertex cover (y, z) on G′\S as follows.
First, set yv = 0 for all v ∈ V \ S.
Next, for all v ∈ V , consider Γv. Add {uv1 : u ∈ N+(v) \ S} ∪ {v1v2, v3v4} to
M . Note that at least one vertex from N+(v) is in S, since S is dominating.
Set yv1 = 0, yv2 = 1, yv3 = yv4 = 0.5, ze = 1 for all e ∈ {uv1 : u ∈ N+(v) \ S}
and ze = 0 for the remaining edges in the gadget.

47

Chapter 4. The Stabilizer Problem

Finally, for all e = uv ∈ E and i ∈ {1, . . . , n}, consider Γi
uv. Since S is

independent, at most one of u and v is in S. If neither are in S, add both uei1
and vei1 to M . If one of them is in S, without loss of generality let it be u, then
add vei1 and ei1e

i
2 to M . Furthermore, add ei3e

i
4 and ei3e

i
5 to M . Set yei1 = 1,

yei2 = 0, yei3 = yei4 = yei5 = 0.5, and zf = 0 for all edges f in the gadget.

Let x be the indicator vector of M . One can verify that x and (y, z) satisfy
the complementary slackness conditions for νcf (G

′ \ S) and τ cf (G
′ \ S). Since

x is integral, this implies that G′ \ S is stable.

(⇐) Let S be a vertex-stabilizer of (G′, 1, c) of size k. We show that: (i) S
contains at least one vertex of each gadget Γv; (ii) without loss of generality,
one can assume that at most one of u and v is in S for each edge uv ∈ E.

(i) Suppose for the sake of contradiction that there is some v ∈ V such that S
contains no vertices of Γv. SinceG

′\S is stable, there is a maximum-cardinality
fractional c-matching x∗, that is integral. Define for each e ∈ E(G′ \ S)

xe =


x∗
e if e ∈ E(G′ \ S) \ E[Γv],

1 if e ∈ {uv1 : u ∈ N+(v)} ,
0 if e = v1v2,

0.5 if e ∈ {v2v3, v3v4, v2v4} .

Note that x is a fractional c-matching in G′ \ S, since x∗ is. Furthermore∑
e∈E[Γv]

xe = dEv + 2.5. However, the total capacity that edges in Γv can use

in any matching is at most 2dEv +5. So,
∑

e∈E[Γv]
xe = dEv +2.5 >

∑
e∈E[Γv]

x∗
e,

since x∗ is integral. Hence, 1⊤x > 1⊤x∗, contradicting the optimality of x∗.

(ii) Suppose there is some e = uv ∈ E such that S contains both u and v. All
gadgets Γi

uv are then components in G′\S. If u and v are the only vertices in S
from some component Γi

uv, then a maximum-cardinality fractional c-matching
in this components is given by xei1e

i
2
= xei1e

i
3
= 1 and xei3e

i
4
= xei4e

i
5
= xei3e

i
5
=

0.5. Which means this component is not stable, and thus G′ \ S is not stable,
a contradiction. Hence, S must contain at least one vertex of each Γi

uv that is
neither u nor v. Consequently, k = |S| ≥ n+2. Since G has only n vertices, it
obviously has an independent dominating set of size at most n, and hence of
size at most k. Such a set can for example be obtained by a greedy approach.
Hence, for the remainder of the proof we can assume that at most one of u
and v is in S for each uv ∈ E.

We now create a set S′ ⊆ V from S, that is an independent dominating set of
G of size at most k, as follows. Iterate over v ∈ V . Let Sv = S ∩ V (Γv). Note
that Sv ̸= ∅ by (i). Define

S′
v =

{
(Sv ∪ S′) ∩N+(v) if this is nonempty,

v otherwise.

48

4.2. Key Polyhedral Tools

Set S′ = S′ ∪ S′
v, and repeat for the next vertex.

Clearly, all S′
v’s are nonempty, which means that S′ contains at least one vertex

from N+(v) for all v ∈ V , which means S′ is dominating.

Suppose for the sake of contradiction that S′ contains both u and v for some
edge uv ∈ E. We know S does not contain both of them, by (ii). If S
contains exactly one of them, without loss of generality let it be u. Then,
when v is considered by the iterative process, (Sv ∪ S′) ∩ N+(v) contains u,
but not v. In particular, this means that v is not added to S′

v and consequently
also not to S′, a contradiction. If S contains neither of them, then because
it is an iterative process, one of them is added first to S′. Without loss of
generality let it be u. Then again, when v is considered by the iterative
process, (Sv ∪ S′) ∩N+(v) contains u but not v, so we reach a contradiction
in the same way. In conclusion, S′ is independent.

For all v ∈ V , before we add S′
v to S′, we have |S′

v \ S′| ≤ |Sv|. Consequently,
|S′| ≤ ∪v∈V |Sv| ≤ |S| = k.

By this claim, any minimum-cardinality vertex-stabilizer of (G′, 1, c) is of the
same size as any minimum independent dominating set of G. Further, note
that the number of vertices V ′ of G′ is O(|V |3), and any efficient O(|V ′|)-
approximation algorithm for the vertex-stabilizer problem translates into an
efficient O(|V |3)-approximation algorithm for the MIDS problem. Hence, the
result follows from the inapproximability of the MIDS problem.

4.2 Key Polyhedral Tools

Before we can state the capacity- and edge-stabilizer algorithms, we need some
new polyhedral tools. First, we have a theorem for a general polytope P, which
afterwards we apply to PFCM.

Theorem 4.3. Let P be any polytope, a⊤x ≤ b be an inequality of the
description of P, and δ ∈ R>0. Let x be an optimal solution of the LP
max{c⊤x : x ∈ P, a⊤x ≤ b − δ}, such that (i) x is a vertex of P, (ii) x
is not an optimal solution of the LP max{c⊤x : x ∈ P}, and (iii) there is no
vertex x̃ of P satisfying b − δ < a⊤x̃ < b. Then it is possible to move to an
optimal solution x∗ of max{c⊤x : x ∈ P} from x in one step over the edges of
P (that is, there is an optimal vertex of P adjacent to x). (See Figure 4.3.)

Proof. Let x∗ be the optimal solution of max{c⊤x : x ∈ P} that is the closest
vertex to x on P (that is, such that we need a minimum number of steps over
the edges of P to reach x∗ from x). Note that a⊤x = b − δ and a⊤x∗ = b,

49

Chapter 4. The Stabilizer Problem

x

x∗a⊤x ≤ b

a⊤x ≤ b− δ

Figure 4.3: Example of the situation described in Theorem 4.3.

otherwise x+λ(x∗−x), for some small λ > 0, and x∗, respectively, contradict
the optimality of x. We need to show that x and x∗ are adjacent on P.
Let P ′ = {x ∈ P : a⊤x ≥ b − δ}. Then x, x∗ ∈ P ′. Note that x and x∗ are
adjacent on P if and only if they are adjacent on P ′. So for the remainder of
the proof we restrict ourselves to P ′.

For the sake of contradiction, assume that x and x∗ are not adjacent on P ′.
Then, the line segment of all their convex combinations, λx + (1 − λ)x∗ for
0 ≤ λ ≤ 1, is not an edge of P ′. Hence, any point λ′x + (1 − λ′)x∗ for
a fixed 0 < λ′ < 1 is also a convex combination of other vertices of P ′:
λ′x+ (1− λ′)x∗ =

∑
i αix̂i +

∑
j βj x̃j , where αi ≥ 0 for all i, βj ≥ 0 for all j,∑

i αi +
∑

j βj = 1, x̂i is a vertex of P ′ with a⊤x̂i = b− δ for all i, and x̃j is a

vertex of P ′ with a⊤x̃j = b for all j. If we multiply both sides by a, we get

a⊤ (λ′x+ (1− λ′)x∗) = a⊤
(∑

i αix̂i +
∑

j βj x̃j

)
,

⇐⇒ λ′(b− δ) + (1− λ′)b =
∑

i αi(b− δ) +
∑

j βjb,

⇐⇒ b− λ′δ =
(∑

i αi +
∑

j βj

)
b−∑i αiδ,

hence, λ′ =
∑

i αi, and consequently, 1 − λ′ =
∑

j βj . We can also multiply

both sides by c. Here we use that x is an optimal solution of max{c⊤x : x ∈
P, a⊤x ≤ b− δ}, and that x∗ is an optimal solution of max{c⊤x : x ∈ P}.

c⊤ (λ′x+ (1− λ′)x∗) = c⊤
(∑

i αix̂i +
∑

j βj x̃j

)
=
∑

i αic
⊤x̂i +

∑
j βjc

⊤x̃j

≤∑i αic
⊤x+

∑
j βjc

⊤x∗ = λ′c⊤x+ (1− λ′)c⊤x∗

So we must have equality throughout. In particular, c⊤x̃j = c⊤x∗, that is,
all x̃j are optimal solutions to max{c⊤x : x ∈ P}. Note that all x̃j ’s are also
vertices of P. We show that we can choose some x̃j to be adjacent to x on P ′,
and hence, also on P, contradicting that x∗ is the optimal solution closest to
x.

50

4.2. Key Polyhedral Tools

Let x′ be a vertex of P ′ that is adjacent to x, such that ax′ = b (such an
x′ must exist). Consider the line segment between x′ and λ′x + (1 − λ′)x∗:
µx′ + (1 − µ)(λ′x + (1 − λ′)x∗) for 0 ≤ µ ≤ 1. For µ < 0, this line segment
extends beyond λ′x + (1 − λ′)x∗. If this line for µ < 0 is still in P ′, then we
can write λ′x+ (1− λ′)x∗ as a convex combination of x′ and some other x̂i’s
and x̃j ’s. Since ax′ = b, by our previous discussion we find that x′ is optimal,
reaching our desired contradiction. Otherwise, λ′x+(1−λ′)x∗ must be at the
boundary, a face, of P ′. Because λ′x+(1−λ′)x∗ is in this face, the whole line
segment λx+(1−λ)x∗ for 0 ≤ λ ≤ 1 must be in this face. We can then repeat
the argument, replacing P ′ by this face. Since this face has strictly smaller
dimension than P ′, we either find a contradiction in one of the iterations, or we
reach a face of dimension one, that is, an edge of P ′. Since this edge contains
the whole line segment λx + (1 − λ)x∗ for 0 ≤ λ ≤ 1, the line segment is the
edge, a contradiction.

We make use of this theorem for PFCM in two settings: to analyze what
happens when we reduce the capacity of a vertex, and when we remove an
edge. For the first setting, we have the following.

Theorem 4.4. Let x be a maximum-weight fractional c-matching in G[cv−1]
for some v ∈ V . If x is basic in G, but does not have maximum weight in G,
then it is possible to move to a basic maximum-weight fractional c-matching
in G in one step over the edges of PFCM(G, c).

Proof. Let P = PFCM(G, c), a⊤x ≤ b be x(δ(v)) ≤ cv, δ = 1, and w be
the objective function. It follows from Theorem 2.2 that x(δ(v)) is integral
for all basic fractional c-matchings. Consequently, there are no vertices x̃ of
PFCM(G, c) that satisfy cv − 1 < x̃(δ(v)) < cv. The theorem now readily
follows from Theorem 4.3.

In the second setting, we need to do a bit of extra work.

Theorem 4.5. Let x be a maximum-weight fractional c-matching in G \ e for
some e ∈ E. If x is basic in G, but does not have maximum weight in G, then
it is possible to move to a basic maximum-weight fractional c-matching in G
in at most two steps over the edges of PFCM(G, c). If two steps are needed, the
first one moves to a vertex with xe =

1
2 , and the second one moves to a vertex

with xe = 1.

Proof. Case 1: xe ∈ {0, 1} for all vertices of PFCM(G, c). It follows directly
from Theorem 4.3 that only one step is needed, by letting P = PFCM(G, c),
a⊤x ≤ b be xe ≤ 1, δ = 1, and w the objective function.

51

Chapter 4. The Stabilizer Problem

Case 2: there are vertices of PFCM(G, c) that satisfy xe = 1
2 . In this case, let

us consider two polytopes: P≤ = {x ∈ PFCM(G, c) : xe ≤ 1
2} and P≥ = {x ∈

PFCM(G, c) : xe ≥ 1
2}. Let x be a maximum-weight fractional c-matching

in G \ e, such that x is basic in G, but x does not have maximum weight
in G. Since x does not have maximum weight over PFCM(G, c), there is an
improving direction at x in PFCM(G, c). Moving in this direction a bit, we
obtain a fractional c-matching with larger weight than x, which is in P≤.
Hence, x does not have maximum weight over P≤. In addition, since x is a
vertex of PFCM(G, c), and feasible in P≤, it is a vertex of P≤.

Let P = P≤, ax ≤ b be xe ≤ 1
2 , δ = 1

2 , and w be the objective function. We
can then apply Theorem 4.3: it is possible to move to an optimal solution x̂
of max{w⊤x : x ∈ P≤} from x in one step over the edges of P≤. Note that
x̂e = 1

2 . If x̂ is a basic maximum-weight fractional c-matching in G, we are
done. So suppose that that is not the case.

Subcase 2a: x̂ is a vertex of PFCM(G, c). First, note that since x̂ is a vertex
of PFCM(G, c), then the edge of P≤ that is used to move from x to x̂, is also
an edge of PFCM(G, c). Furthermore, since x̂ is feasible in P≥, it is also a
vertex in P≥. By assumption, x̂ is optimal over P≤, so also over P≥ with the
additional constraint xe ≤ 1

2 , but not optimal over PFCM(G, c), so also not
over P≥. Let P = P≥, ax ≤ b be xe ≤ 1, δ = 1

2 , and w the objective function.
We can then apply Theorem 4.3: it is possible to move to an optimal solution
x∗ of max{w⊤x : x ∈ P≥} from x̂ in one step over the edges of P≥. Note that
x∗
e = 1. Then, x∗ is also an optimal solution of max{w⊤x : x ∈ PFCM(G, c)},

and a vertex of PFCM(G, c). Since x̂ and x∗ are both vertices of PFCM(G, c),
the edge of P≥ that is used, is also an edge of PFCM(G, c). All in all, we
get that, starting from x, it is possible to move to a basic maximum-weight
fractional c-matching in G in two steps over the edges of PFCM(G, c), such
that xe =

1
2 after the first step, and xe = 1 after the second step.

Subcase 2b: x̂ is not a vertex of PFCM(G, c). In this case, we moved from x
to x̂ over an edge of P≤ which is strictly contained in an edge of PFCM(G, c):
it must therefore be that P≤ and P≥ split this edge in two, and the splitting
point, x̂, is a vertex of both polytopes. By assumption, x̂ is optimal over P≤,
so also over P≥ with the additional constraint xe ≤ 1

2 . Since we reached x̂ by
moving over just part of an edge of PFCM(G, c), and this increased the weight,
moving further along this edge will increase the weight even further. Hence,
x̂ is not optimal over P≥. Let P = P≥, ax ≤ b be xe ≤ 1, δ = 1

2 , and w the
objective function. We can again apply Theorem 4.3: it is possible to move
to an optimal solution x∗ of max{w⊤x : x ∈ P≥} from x̂ in one step over
the edges of P≥. Note that x∗

e = 1. Then, x∗ is also an optimal solution of
max{w⊤x : x ∈ PFCM(G, c)}, and a vertex of PFCM(G, c). Since x∗ is a vertex
of PFCM(G, c), but x̂ is not, the edge of P≥ that is used, is only part of an
edge of PFCM(G, c). In particular, it must be the remainder of the edge over

52

4.2. Key Polyhedral Tools

which we moved in the first step. All in all, we get that, starting from x, it
is possible to move to a basic maximum-weight fractional c-matching in G in
one step over the edges of PFCM(G, c).

The following theorem describes the relation between adjacent vertices on
PFCM. The theorem is based on methods used in Section III-G in Sanità [46].

Theorem 4.6. If x and y are adjacent vertices of PFCM(G, c), then y = x+αg,
where g ∈ C(PFCM) and α ∈

{
1
2 , 1
}
. Furthermore,

• if α = 1, then g ∈ C1 ∪ C2 ∪ C3 and |Cy| = |Cx|.
• if α = 1

2 , then g ∈ C1 ∪ C2 ∪ C4 ∪ C5, and
– if g ∈ C1, then |Cy| = |Cx|.
– if g ∈ C2 ∪ C4, then |Cy| = |Cx| ± 1, and the odd cycle in g belongs

to either Cx or Cy.

– if g ∈ C5, then |Cy| = |Cx| ± {0, 2}, and the odd cycles in g both
belong to Cx, or both to Cy, or exactly one belongs to Cx and the
other to Cy.

Before we go into the proof, we introduce a fractional perfect c-matching poly-
tope, which will be helpful. Consider PFCM. Add a nonnegative slack variable
for each inequality of the form x(δ(v)) ≤ cv. We get a polytope that naturally
corresponds to the set of fractional perfect c-matchings on a modified graph
G = (V,E∪L), obtained from G by adding a loop edge uv ∈ L for each vertex
v ∈ V . We define

PFPCM(G, c) =
{
x ∈ RE∪L : x(δ(v)) = cv ∀v ∈ V, x ≥ 0, xe ≤ 1 ∀e ∈ E

}
,

as the polytope of fractional perfect c-matchings in G.

Proof of Theorem 4.6. Let g be the edge direction of the edge between x and
y, scaled in such a way that the components of g are co-prime. Then, clearly,
y = x + αg for some α ̸= 0. Without loss of generality, we can assume that
α > 0, since −g is also an edge direction of the same edge. All edge directions
are circuits, hence g ∈ C(PFCM), and in particular, g ∈ C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5
by Proposition 2.2. That means that the components of g have a magnitude
of at least 1. Then it follows from 0 ≤ x ≤ 1, that α ≤ 1. Likewise, for the
circuits with components that have a magnitude of 2, it follows that α ≤ 1

2 .
Finally, since x and y are vertices, that is, they are basic, their components
are equal to 0, 1

2 , or 1, which implies α ∈
{

1
2 , 1
}
.

Case 1: α = 1. As discussed, for circuits with components that have a mag-
nitude of 2, α ≤ 1

2 . Hence, in this case, g ∈ C1 ∪ C2 ∪ C3. Furthermore, all

53

Chapter 4. The Stabilizer Problem

components of αg are integral, which means that fractional edges, and in par-
ticular the fractional odd cycles, are not affected. It follows that |Cy| = |Cx|.

Case 2: α = 1
2 . Circuits in C3 correspond with paths. For either endpoint of

this path, applying the circuit, that is, adding αg to a fractional c-matching,
results in α · ±1 = ± 1

2 on a single edge incident with the vertex. Since x and
y are both basic, this is not possible, so g ∈ C1 ∪ C2 ∪ C4 ∪ C5.

We extend x and y to fractional perfect c-matchings x and y in G. This
extension is uniquely obtained by setting xvv = cv − x(δ(v)) for each uv ∈ L,
and likewise for y. Since x and y are adjacent vertices of PFCM(G, c), it follows
that x and y are adjacent vertices of PFPCM(G, c). We extend g to g such that
y = x+ 1

2g.

Let E1 = {e ∈ E : xe = ye = 1}, and G be the graph induced by the supports
of x and y, minus the edges in E1. See Figure 4.4 for an example of x, y,
g, and the graph G obtained from them. We claim that there is exactly one
component of G that contains an edge e with xe ̸= ye. Clearly there is at least
one, since x ̸= y and hence x ̸= y. Actually, x ̸= y only on the support of g.
Since xe ̸= ye for every edge e in the support of g, we have that at least one of
xe and ye is not zero, and at least one is not one. Hence, all those edges are in
G, and in particular they all are in the same component, since g is connected.

Let K be the component of G that contains an edge e with xe ̸= ye, and let
k be the number of vertices in this component. Let K be a subgraph of G
induced by the vertices in K, minus the edges in E1. We change the capacities
accordingly: let c|K be obtained from c by restricting to the vertices in K,
and, for each vertex v ∈ V (K), reducing the capacity of v by |δ(v) ∩ E1|. Let
x|K be obtained from x by restricting to the edges in K, and likewise for y|K .
Note that x|K and y|K are perfect c-matchings in K with respect to c|K .
In particular, they are adjacent vertices of PFPCM(K, c|K), since x and y are
adjacent vertices of PFPCM(G, c).

Let A be the incidence matrix of K. Since the columns associated to the loop
edges form an identity matrix, the rank of A is k. Since x|K and y|K are
adjacent vertices, there must be |E(K)| − 1 linearly independent constraints
that are tight for both of them. Since the rank of A is k, and we removed the
edges for which the “≤ 1” constraint is tight for both x and y, this implies
that there are at least |E(K)| − 1 − k edges for which the “≥ 0” constraint
is tight for both of them. Consequently, there are at most k + 1 edges in the
union of the supports of x|K and y|K . Note that the graph induced by the
supports of x|K and y|K is K. With k + 1 edges on k connected vertices, we
have a spanning tree plus two additional (possibly loop) edges: it is easy to
realize then that there can be at most two odd cycles in K.

54

4.2. Key Polyhedral Tools

(a) Example of x, with xe = 1 for bold edges (and the loop), xe = 1
2
for

dashed edges, and xe = 0 for normal edges.

(b) Example of y, with ye = 1 for bold edges, ye = 1
2
for dashed edges, and

ye = 0 for normal edges (and the loop).

−2
1

−1
1

(c) The circuit g such that y = x+ 1
2
g is given on the edges (g is the extension

of a circuit g ∈ C2).

(d) Example of G. The component on the right is the unique component that
contains an edge e with xe ̸= ye.

Figure 4.4: Example of a graph G with unit-weights and unit-capacities,
except for the vertex that has a loop edge, which has a capacity of two.
The other loops are not drawn, as they are not relevant for the example.
Figure 4.4a shows x, Figure 4.4b shows y, Figure 4.4c shows g, and
Figure 4.4d shows G.

55

Chapter 4. The Stabilizer Problem

Subcase 2a: g ∈ C1. The support of g is an even cycle, say C. If x|K = 1
2 for

all edges on C, then x|K , and therefore also x, contains a fractional even cycle,
which contradicts that x is basic. Similarly, if x|K is integral for all edges on
C, y|K = 1

2 for all edges on C, contradicting that y is basic. Hence, x|K has
edges on C with integral value, and also edges with value 1

2 . The fractional
edges imply that x|K has at least one fractional odd cycle. The integral edges
become fractional in y|K , which means y|K also has at least one fractional
odd cycle, different from the one of x|K . These odd cycles are distinct, and
both in K, and we have already shown that K contains at most two odd cycles.
Hence,

∣∣Cy|K
∣∣ = ∣∣Cx|K

∣∣.
Subcase 2b: g ∈ C2 ∪ C4. The support of g is a (possibly empty) path, an odd
cycle and a loop edge, of which only the odd cycle can influence the fractional
odd cycles in x|K and y|K . If this odd cycle in the support of g is a fractional
odd cycle in x|K/y|K , then note that y|K contains exactly one less/more
fractional odd cycle than x|K . Otherwise, both x|K and y|K have fractional
and integral edges on the odd cycle of g. That means that x|K and y|K both
have at least one odd cycle in the component, different from the odd cycle in
g, and different from each other. But then there are at least three odd cycles
in the component, a contradiction. Hence, the odd cycle in g belongs to either
Cx|K or Cy|K , and

∣∣Cy|K
∣∣ = ∣∣Cx|K

∣∣± 1.

Subcase 2c: g ∈ C5. The support of g is two odd cycles connected by a (possibly
empty) path. Since K contains at most two odd cycles, and g already contains
two odd cycles, these are the only odd cycles. Similar to the previous subcase,
for both the odd cycles separately we can argue that not both x|K and y|K
can have fractional and integral edges on the odd cycle, that is, each odd cycle
belongs to either Cx|K or Cy|K . There are three options: both odd cycles
belong to Cx|K , or both to Cy|K , or one to Cx|K and one to Cy|K . It follows

that
∣∣Cy|K

∣∣ = ∣∣Cx|K
∣∣± {0, 2}.

Since x equals y outside of K, our conclusions carry over from x|K and y|K
to x and y. In addition, removing loop edges, that is, going back from x, y to
x, y, does not affect fractional odd cycles. Hence, our conclusions also hold for
x and y: If g ∈ C1, then |Cy| = |Cx|. If g ∈ C2∪C4, then |Cy| = |Cx|±1 and the
odd cycle in g belongs to either Cx or Cy. If g ∈ C5, then |Cy| = |Cx| ± {0, 2},
and the odd cycles in g both belong to Cx, or both to Cy, or exactly one to
Cx and the other to Cy.

4.3 Capacity-Stabilizer

Our algorithm for the capacity-stabilizer problem is based on the unit-capacity
vertex-stabilizer algorithm of Koh and Sanità [36]. So before we state our

56

4.3. Capacity-Stabilizer

algorithm, we explain the idea of their algorithm.

Recall from Proposition 3.1 that a graph is stable if and only if there are no
fractional odd cycles. The vertex-stabilizer algorithm of Koh and Sanità [36]
is based on this: compute a basic maximum-weight fractional matching with
the minimum number of fractional odd cycles (γ(G)), and remove one vertex
from every fractional odd cycle. This same approach does not work in the
capacitated case: if we remove a vertex from a fractional odd cycle, even
though that specific fractional odd cycle is removed, another one might be
created (see Figure 4.5). Interestingly, if instead of removing the vertex u in
Figure 4.5, we reduce its capacity from two to one, we do obtain a stable graph.
Our results confirm what this example suggests: As we have seen in Section 4.1,
the vertex-stabilizer problem is APX-hard in capacitated instances, so there is
no polynomial-time exact algorithm, unless P = NP . And as we will discuss
now, the algorithm of Koh and Sanità [36] generalizes to capacitated graphs
when reducing the capacity of vertices.

u v

(a) The graph G with a basic maxi-
mum-weight fractional c-matching x
with |Cx| = γ(G) = 1.

u v

(b) The graph G \ u with a basic
maximum-weight fractional c-match-
ing x with |Cx| = γ(G \ u) = 1.

u v

(c) The graph G[cu − 1] with a basic
maximum-weight fractional c-match-
ing x with |Cx| = γ(G[cu − 1]) = 0.

Figure 4.5: A graph (G, 1, c) with cu = cv = 2 and c = 1 otherwise. Bold
lines indicate edges with xe = 1, bold dashed lines edges with xe = 1

2
and normal lines edges with xe = 0. Figure 4.5b shows that removing
a vertex from a fractional odd cycle might create a new fractional odd
cycle, and Figure 4.5c shows that instead reducing the capacity of that
same vertex stabilizes the graph.

We first exploit the polyhedral results from Section 4.2 to prove that a lower
bound on the size of a capacity-stabilizer is given by the minimum number of

57

Chapter 4. The Stabilizer Problem

fractional odd cycles in the support of any basic maximum-weight fractional
c-matching.

Lemma 4.1. For every capacity-stabilizer S, |S| ≥ γ(G).

Proof. To prove the lemma, by Proposition 3.1, it is enough to show that
reducing the capacity of any vertex by one decreases the number of fractional
odd cycles by at most one. Therefore, from now on, we concentrate on proving
the following statement:

for all v ∈ V, γ(G[cv − 1]) ≥ γ(G)− 1. (4.1)

Let x be a basic maximum-weight fractional c-matching in G[cv − 1] with
γ(G[cv − 1]) fractional odd cycles. Let (y, z) be an optimal fractional vertex
cover in G[cv − 1], satisfying complementary slackness (see Equation (2.2))
with x. Note that increasing the capacity does not influence the feasibility of
x and (y, z), hence they are a fractional c-matching and vertex cover in G,
respectively.

If x has maximum weight in G, then γ(G) ≤ |Cx| = γ(G[cv − 1]), and hence
(4.1) holds.

Assume now that x does not have maximum weight in G. Then, x and (y, z)
cannot satisfy complementary slackness in G. The change from G[cv− 1] to G
only influences the complementary slackness condition yv = 0∨x(δ(v)) = cv−1,
so we must have yv > 0 and x(δ(v)) = cv − 1 < cv. We distinguish two cases.

Case 1: v ∈ V (C) for some C ∈ Cx. Create a new fractional c-matching x̂ by
alternate rounding C covering v. One can check that x̂ and (y, z) satisfy com-
plementary slackness in G. Consequently, x̂ is a maximum-weight fractional
c-matching in G, and given that x is basic, so is x̂. Then, γ(G) ≤ |Cx̂| =
|Cx| − 1 = γ(G[cv − 1])− 1, and hence (4.1) holds.

Case 2: v /∈ V (Cx). Since x is basic in G[cv − 1] and v is not part of any frac-
tional odd cycle, by Theorem 2.2, x is also basic in G. Then, by Theorem 4.4,
we can move to a basic maximum-weight fractional c-matching x∗ in G in one
step over the edges of PFCM(G, c). By Theorem 4.6, x∗ = x+αg for α ∈

{
1
2 , 1
}

and g ∈ C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5. Because w⊤x∗ > w⊤x, x∗ cannot be feasi-
ble in G[cv − 1], so we must have x∗(δ(v)) = cv = x(δ(v)) + 1. Consequently,
g ∈ C2∪C3∪C4. Then, by Theorem 4.6, we have |Cx∗ | = |Cx|±{0, 1}. Therefore
|Cx∗ | ≤ |Cx|+1, and consequently, γ(G) ≤ |Cx∗ | ≤ |Cx|+1 = γ(G[cv−1])+1,
yielding (4.1).

We can now state the polynomial-time algorithm to solve the stabilization
problem via capacity reduction.

58

4.3. Capacity-Stabilizer

Algorithm 1 stabilization by capacity reduction

1: initialize S ← ∅
2: compute a basic maximum-weight fractional c-matching x in G with γ(G)

fractional odd cycles C1, . . . , Cγ(G), and a minimum fractional vertex cover
(y, z) in G

3: for i = 1 to γ(G) do
4: S ← S + argminv∈V (Ci) yv
5: end for
6: return G[cS − 1]

Theorem 4.7. Algorithm 1 is a polynomial-time algorithm that computes a
minimum capacity-stabilizer S for G. Moreover,

(a) The solution S reduces the capacity of each vertex by at most one unit.

(b) The solution S preserves the weight of a maximum-weight matching by
a factor of 2

3 , that is, ν
c(G[cS − 1]) ≥ 2

3ν
c(G).

Proof. Let S = {v1, . . . , vγ(G)} be the set of vertices whose capacity is reduced
in Algorithm 1. Let x̂ be obtained from x by alternate rounding Ci exposing
vi, for all i ∈ {1, . . . , γ(G)}. Clearly, x̂ is a fractional c-matching in G[cS − 1].
In addition, (y, z) is still a fractional vertex cover in G[cS − 1]. One can check
that they satisfy complementary slackness with respect to G[cS − 1]. Hence,
they are optimal in G[cS − 1]. Note that x̂ is an integral matching. Hence,
G[cS − 1] is stable. Moreover, |S| = γ(G), which is minimum by Lemma 4.1.

Since all cycles in Cx are vertex-disjoint, the set S is not a multiset. Hence,
(a) holds. To see (b), note that, since vi = argminv∈V (Ci) yv, we have

yvi ≤
y(V (Ci))

|Ci|
≤ 1

3y(V (Ci)).

Then, using stability of G[cS − 1] and optimality of (y, z) in G[cS − 1], we find

νc(G[cS − 1]) = τ cf (G[cS − 1]) = (cS−1)⊤y + 1⊤z

= c⊤y −
γ(G)∑
i=1

yvi + 1⊤z ≥ c⊤y −
γ(G)∑
i=1

1
3y(V (Ci)) + 1⊤z

≥ 2
3 (c

⊤y + 1⊤z) = 2
3τ

c
f (G) ≥ 2

3ν
c(G).

In the above chain of inequalities, we use the fact that cv − 1
3 ≥ 2

3cv for all
v ∈ V (Cx). This is true since for all these vertices cv ≥ 1.

59

Chapter 4. The Stabilizer Problem

The previous theorem shows that there always exists a capacity-stabilizer of
minimum size that preserves the total value that the players can get by a
factor of 2

3 . We note that, for arbitrary weighted graphs, this factor is asymp-
totically best possible, as shown by Koh and Sanità [36] already in the unit-
capacity case. However, for unit-capacities and unit-weights, Ahmadian et
al. [1] proved a stronger statement: namely, that inclusion-wise minimal sta-
bilizers completely preserve the total value that the players can get (that is,
up to a factor of 1). Using our polyhedral tools, we can show that this state-
ment still holds in the capacitated setting (and note that it is satisfied by the
solution provided by our algorithm).

Theorem 4.8. In (G, 1, c), for any inclusion-wise minimal capacity-stabilizer
S, we have νc(G[cS − 1]) = νc(G).

Proof. Let M be a maximum-cardinality c-matching in G[cS − 1].

Claim 4.4. M is maximum in G[cS\v − 1], for any v ∈ S.

Proof. For the sake of contradiction, suppose that |M | < νc(G[cS\v − 1]).

Since S is a stabilizer, G[cS − 1] is stable, and hence there exists a fractional
vertex cover (y, z) that satisfies complementary slackness with M in G[cS−1].
Increasing the capacity of a vertex does not change feasibility of (y, z), hence,
(y, z) is a fractional vertex cover in G[cS\v − 1]. Observe that, since the edges
have unit-weight, we can assume without loss of generality that y ≤ 1. Then

τ cf (G[cS\v−1]) ≤ (cS−1)⊤y+yv+1⊤z = |M |+yv ≤ |M |+1 ≤ νc(G[cS\v−1]),

that is, G[cS\v − 1] is stable, contradicting the minimality of S.

Claim 4.5. M is maximum in G[cS\{u,v} − 1], for any u, v ∈ S.

Proof. For the sake of contradiction, suppose that |M | < νc(G[cS\{u,v} − 1]).

Let x be the indicator vector of M , then by Theorem 2.2, x is basic. Since
S is inclusion-wise minimal, G[cS\v − 1] is not stable, and thus x is not a
maximum fractional c-matching in G[cS\v − 1]. We can apply Theorem 4.4 to
x, G[cS−1] and G[cS\v−1], and conclude that there exists a basic maximum-
weight fractional c-matching x̂ in G[cS\v−1], which is adjacent to x on PFCM.

By Theorem 4.6, x̂ = x+ αg, where α ∈ { 12 , 1} and g ∈ C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5.
SinceM is maximum in G[cS\v−1] by the previous claim, x̂ cannot be integral,

so α = 1
2 , and consequently, by Theorem 4.6, g /∈ C3. Furthermore, the circuits

in C1 ∪ C5 are not augmenting in cardinality, so g ∈ C2 ∪ C4, and necessarily
v must be the only vertex with g(δ(v)) ̸= 0. Observing now that |M | and

60

4.3. Capacity-Stabilizer

νc(·) are integral, we find that x̂ is not a maximum fractional c-matching in
G[cS\{u,v} − 1], since

1⊤x̂ = 1⊤x+ 1
2 = |M |+ 1

2 < νc(G[cS\{u,v} − 1]) ≤ νcf (G[cS\{u,v} − 1]).

Applying Theorem 4.4 again, we get that there exists a basic maximum-weight
fractional c-matching x∗ in G[cS\{u,v} − 1], which is adjacent to x̂ on PFCM.

By Theorem 4.6, x∗ = x̂+βh, where β ∈ { 12 , 1} and h ∈ C1 ∪C2 ∪C3 ∪C4 ∪C5.
As before, the circuits in C1 ∪ C5 are not augmenting in cardinality, so h ∈
C2 ∪ C3 ∪ C4. Since S is an inclusion-wise minimal stabilizer, G[cS\{u,v} − 1]

is not stable, and consequently, 1⊤x∗ > νc(G[cS\{u,v} − 1]). Using integrality

of νc(·) and half-integrality of x∗ and x̂, this implies 1⊤x∗ ≥ 1⊤x̂ + 1. So we
must have β = 1, hence, h ∈ C2 ∪ C3 by Theorem 4.6, and 1⊤x∗ = 1⊤x̂ + 1.
Furthermore, u must be one of the (possibly two) vertices with h(δ(u)) > 0.

Assume first that h ∈ C2. Then, u is the only vertex with h(δ(u)) > 0.
However, as components of βh have a magnitude of one, it means that u is
not saturated in G[cS\v − 1]. Therefore, x̂ + 1

2h is a fractional c-matching in
G[cS\v − 1] with higher objective value than x̂, contradicting its optimality.

We are left with h ∈ C3. It follows that the support of h is a path Ph with
endpoints u and some vertex t ̸= u. Note that, necessarily, t ̸= v, as v is
saturated in x̂, while t is not. In particular, neither u nor t are saturated in
G[cS\u−1]. However, we know that x+βh cannot be a fractional c-matching in
G[cS\u−1], becauseM is of maximum cardinality inG[cS\u−1] by the previous
claim. Since x + βh does not violate any capacity bound in G[cS\u − 1], the
reason why x+ βh is not a fractional c-matching must be the fact that either
0 ≤ x + βh or x + βh ≤ 1 does not hold. Since instead 0 ≤ x + αg + βh ≤ 1
holds, it follows that the supports of h and g must share some edge. Note that
since all components of βh have a magnitude of one, the support of h cannot
overlap with the cycle in the support of g. Let ℓ be the last vertex on the
ut-path Ph that is an endpoint of a shared edge between the supports of h and
g. By construction, the subpath P1 from ℓ to t in Ph is then an M -alternating
path. Let Pg denote the edges in the support of g, and let P2 be the path
from v to ℓ in Pg. Note that P2 is also an M -alternating path. Then, one
observes that either P2 ∪ P1 is a proper M -augmenting tv-path in G[cS\v − 1]
(contradicting the previous claim), or P1 ∪ (Pg \ P2) is a circuit that we can
apply to (fractionally) increase the cardinality of x in G[cS − 1], contradicting
the stability of G[cS − 1].

Suppose for the sake of contradiction that |M | < νc(G). Then there exists a
proper M -augmenting st-trail T in G, by Theorem 2.1 (note that, possibly,
s = t). Since M is maximum in G[cS − 1], T cannot be proper in G[cS − 1],
by Theorem 2.1. Therefore, |S ∩ {s, t}| ≥ 1. We distinguish two cases.

61

Chapter 4. The Stabilizer Problem

Case 1: |S ∩ {s, t}| = 1. Without loss of generality, let s be the vertex whose

capacity gets reduced by S. If s ̸= t, then c
S\s−1
s = cS−1

s + 1 ≥ dMs + 1 and

c
S\s−1
t = ct. If s = t then c

S\s−1
s = cs. In both cases, T is a proper M -

augmenting trail in G[cS\s − 1], because T is proper in G, contradicting the
first claim.

Case 2: |S ∩ {s, t}| = 2. If s ̸= t, then c
S\{s,t}−1
s = cS−1

s + 1 ≥ dMs + 1 and

c
S\{s,t}−1
t = cS−1

t +1 ≥ dMt +1. If s = t then c
S\{s,s}−1
s = cS−1

s +2 ≥ dMs +2. In
both cases, T is a proper M -augmenting trail in G[cS\{s,t} − 1], contradicting
the second claim.

4.3.1 Increasing the Capacity

Let us consider a variant of the capacity-stabilizer problem where we instead
increase the capacity of each vertex in S, so:

Given a graph G = (V,E) with edge weights w ∈ RE
≥0 and vertex capacities c ∈

ZV
≥0, find a minimum-cardinality multiset S of vertices V such that νcf (G[cS +

1]) = νc(G[cS + 1]).

We will show that all our results also work for this case. First, we need a
different version of Theorem 4.3.

Theorem 4.9. Let P be any polytope, a⊤x ≤ b be an inequality of the de-
scription of P, and δ ∈ R>0. Let x be an optimal vertex of the LP max{c⊤x :
x ∈ P}, such that (i) a⊤x = b, and (ii) there is no vertex x̃ of P satisfying
b − δ < a⊤x̃ < b. Then it is possible to move to an optimal solution x∗ of
max{c⊤x : x ∈ P, a⊤x ≤ b− δ} from x in one (partial) step over the edges of
P (that is, there is an optimal vertex of {x ∈ P : a⊤x ≤ b− δ} that is (1) also
a vertex of P and adjacent to x, or (2) on an edge of P that is incident with
x). (See Figure 4.6.)

x∗

x

x∗

x
a⊤x ≤ b

a⊤x ≤ b− δ

Figure 4.6: Example of the situation described in Theorem 4.3, with
two options for x and x∗.

62

4.3. Capacity-Stabilizer

Proof. Let x∗ be the optimal vertex of max{c⊤x : x ∈ P, a⊤x ≤ b − δ} that
is the closest to x on P (that is, such that we need a minimum number of
(partial) steps over the edges of P to reach x∗ from x). Note that a⊤x∗ = b−δ,
otherwise x∗ + λ(x− x∗), for some small λ > 0, contradicts the optimality of
x∗. We need to show that x and x∗ are adjacent on P.
Let P ′ = {x ∈ P : a⊤x ≥ b − δ}. Then x, x∗ ∈ P ′, and in particular x∗ is a
vertex of P ′. Note that x and x∗ are adjacent on P or x∗ is on an edge of P
incident to x if and only if they are adjacent on P ′. So for the remainder of
the proof we restrict ourselves to P ′.

For the sake of contradiction assume that x and x∗ are not adjacent on P ′.
Then, the line segment of all their convex combinations: λx + (1 − λ)x∗ for
0 ≤ λ ≤ 1, is not an edge of P ′. Hence, any point λ′x + (1 − λ′)x∗ for
a fixed 0 < λ′ < 1 is also a convex combination of other vertices of P ′:
λ′x+ (1− λ′)x∗ =

∑
i αix̂i +

∑
j βj x̃j , where αi ≥ 0 for all i, βj ≥ 0 for all j,∑

i αi +
∑

j βj = 1, x̂i is a vertex of P ′ with a⊤x̂i = b− δ for all i, and x̃j is a

vertex of P ′ with a⊤x̃j = b for all j. If we multiply both sides by a we get

a⊤ (λ′x+ (1− λ′)x∗) = a⊤
(∑

i αix̂i +
∑

j βj x̃j

)
,

⇐⇒ λ′b+ (1− λ′)(b− δ) =
∑

i αi(b− δ) +
∑

j βjb,

⇐⇒ b− (1− λ′)δ =
(∑

i αi +
∑

j βj

)
b−∑i αiδ,

hence 1−λ′ =
∑

i αi, and consequently λ′ =
∑

j βj . We can also multiply both

sides by c. Here we use that x is an optimal solution of max{c⊤x : x ∈ P},
and that x∗ is an optimal solution of max{c⊤x : x ∈ P, a⊤x ≤ b− δ}.

c⊤ (λ′x+ (1− λ′)x∗) = c⊤
(∑

i αix̂i +
∑

j βj x̃j

)
=
∑

i αic
⊤x̂i +

∑
j βjc

⊤x̃j

≤∑i αic
⊤x∗ +

∑
j βjc

⊤x = (1− λ′)c⊤x∗ + λ′c⊤x

So we must have equality throughout. In particular, c⊤x̂j = c⊤x∗, that is, all
x̂j are optimal solutions to max{c⊤x : x ∈ P, a⊤x ≤ b − δ}. We show that
we can choose some x̂j to be adjacent to x on P ′, contradicting that x∗ is the
optimal solution closest to x.

Let x′ be a vertex of P ′ that is adjacent to x, such that ax′ = b− δ (such an
x′ must exist). Consider the line segment between x′ and λ′x + (1 − λ′)x∗:
µx′ + (1 − µ)(λ′x + (1 − λ′)x∗) for 0 ≤ µ ≤ 1. For µ < 0, this line segment
extends beyond λ′x+(1−λ′)x∗. If this line for µ < 0 is still in P ′, then we can
write λ′x+ (1− λ′)x∗ as a convex combination of x′ and some other x̂i’s and
x̃j ’s. Since ax

′ = b−δ, by our previous discussion we find that x′ is an optimal
solution to max{c⊤x : x ∈ P, a⊤x ≤ b−δ}, reaching our desired contradiction.
Otherwise, λ′x + (1 − λ′)x∗ must be at the boundary, a face, of P ′. Because

63

Chapter 4. The Stabilizer Problem

λ′x + (1 − λ′)x∗ is in this face, the whole line segment λx + (1 − λ)x∗ for
0 ≤ λ ≤ 1 must be in this face. We can then repeat the argument, replacing
P ′ by this face. Since this face has strictly smaller dimension than P ′, we either
find a contradiction in one of the iterations, or we reach a face of dimension
one, that is, an edge of P ′. Since this edge contains the whole line segment
λx+(1−λ)x∗ for 0 ≤ λ ≤ 1, the line segment is the edge, a contradiction.

This also gives us an alternate version of Theorem 4.4.

Theorem 4.10. Let x be a basic maximum-weight fractional c-matching in
G, such that x(δ(v)) = cv for some v ∈ V . Then it is possible to move to a
basic maximum-weight fractional c-matching in G[cv − 1] in one (partial) step
over the edges of PFCM(G, c).

Proof. Let P = PFCM(G, c), a⊤x ≤ b be x(δ(v)) ≤ cv, δ = 1, and w be
the objective function. It follows from Theorem 2.2 that x(δ(v)) is integral
for all basic fractional c-matchings. Consequently, there are no vertices x̃ of
PFCM(G, c) that satisfy cv − 1 < x̃(δ(v)) < cv. The theorem now readily
follows from Theorem 4.3.

We use this result to show that γ(G) is still a lower bound on the size of a(n
increase) capacity-stabilizer.

Lemma 4.2. For every (increase) capacity-stabilizer S, |S| ≥ γ(G).

Proof. To prove the lemma, by Proposition 3.1, it is enough to show that
increasing the capacity of any vertex by one decreases the number of fractional
odd cycles by at most one. Therefore, from now on, we concentrate on proving
the following statement:

for all v ∈ V, γ(G[cv + 1]) ≥ γ(G)− 1. (4.2)

Let x be a basic maximum-weight fractional c-matching in G[cv + 1] with
γ(G[cv + 1]) fractional odd cycles. Let (y, z) be an optimal fractional vertex
cover in G[cv + 1], satisfying complementary slackness (see Equation (2.2))
with x. Note that decreasing the capacity does not influence the feasibility
of (y, z), hence (y, z) is a fractional vertex cover in G. However, x is only a
fractional c-matching in G if x(δv) ≤ cv, and not if x(δv) = cv + 1.

Assume that x(δv) ≤ cv, that is, x is a fractional c-matching in G. By comple-
mentary slackness in G[cv+1] we have yv = 0. The change from G[cv+1] to G
only influences the complementary slackness condition yv = 0∨x(δ(v)) = cv+1,
which is satisfied by yv = 0 in both graphs. Hence, x has maximum weight in
G, which means that γ(G) ≤ |Cx| = γ(G[cv + 1]), and hence (4.2) holds.

64

4.3. Capacity-Stabilizer

Assume now that x(δ(v)) = cv + 1. Then, by Theorem 4.10, we can move to
a basic maximum-weight fractional c-matching x∗ in G in one (partial) step
over the edges of PFCM(G, c). If we take a complete step, by Theorem 4.6,
x∗ = x+αg for α ∈

{
1
2 , 1
}
and g ∈ C1∪C2∪C3∪C4∪C5. If we take only a partial

step, then let x′ be the vertex obtained by taking the complete step. Then,
by Theorem 4.6, x′ = x+αg for α ∈

{
1
2 , 1
}
and g ∈ C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5. To

reach x∗ we only take part of this step, so x∗ = x+ α′g for 0 < α′ < α. Now,
since x∗ is basic in G, we know that x∗ is half-integral, so we must have α′ = 1

2
(and α = 1). Finally, in both cases we found that x∗ = x+ αg for α ∈

{
1
2 , 1
}

and g ∈ C1∪C2∪C3∪C4∪C5. Since x∗(δ(v)) ≤ cv = x(δ(v))−1, we must have
g ∈ C2∪C3∪C4. Then, by Theorem 4.6, we have |Cx∗ | = |Cx|±{0, 1}. Therefore
|Cx∗ | ≤ |Cx|+1, and consequently, γ(G) ≤ |Cx∗ | ≤ |Cx|+1 = γ(G[cv +1])+1,
yielding (4.2).

Like in the capacity-reduction case, we stabilize by selecting one vertex per
fractional odd cycle, except now we increase their capacity.

Algorithm 2 stabilization by capacity increase

1: initialize S ← ∅
2: compute a basic maximum-weight fractional c-matching x in G with γ(G)

fractional odd cycles C1, . . . , Cγ(G), and a minimum fractional vertex cover
(y, z) in G

3: for i = 1 to γ(G) do
4: S ← S + vi for any vi ∈ V (Ci)
5: end for
6: return G[cS + 1]

Theorem 4.11. Algorithm 2 is a polynomial-time algorithm that computes a
minimum (increase) capacity-stabilizer S for G. Moreover,

(a) The solution S increases the capacity of each vertex by at most one unit.

(b) The solution S preserves the weight of a maximum-weight matching, that
is, νc(G[cS + 1]) ≥ νc(G).

(c) In unit-weight graphs, the solution S increases the size of a maximum
matching by γ(G), that is, νc(G[cS + 1]) = νc(G) + γ(G).

Proof. Let S = {v1, . . . , vγ(G)} be the set of vertices whose capacity is increased
in Algorithm 2. Let x̂ be obtained from x by alternate rounding Ci covering
vi, for all i ∈ {1, . . . , γ(G)}. Clearly, x̂ is a fractional c-matching in G[cS + 1].
In addition, (y, z) is still a fractional vertex cover in G[cS +1]. One can check
that they satisfy complementary slackness with respect to G[cS + 1]. Hence,

65

Chapter 4. The Stabilizer Problem

they are optimal in G[cS + 1]. Note that x̂ is an integral matching. Hence,
G[cS + 1] is stable. Moreover, |S| = γ(G), which is minimum by Lemma 4.2.

Since all cycles in Cx are vertex-disjoint, the set S is not a multiset. Hence,
(a) holds. Using stability of G[cS + 1], optimality of (y, z) in G[cS + 1], and
y ≥ 0, we find

νc(G[cS + 1]) = τ cf (G[cS + 1]) = (cS+1)⊤y + 1⊤z

= c⊤y +
γ(G)∑
i=1

yvi + 1⊤z ≥ c⊤y + 1⊤z

= τ cf (G) ≥ νc(G).

So, (b) holds. Finally, to see (c), note that in unit-weight graphs we have

yv = 1
2 for all v ∈ V (Cx). So

∑γ(G)
i=1 yvi =

1
2γ(G) in the equation above, which

gives us νc(G[cS +1]) = τ cf (G)+ 1
2γ(G). In the proof of Theorem 4.7 we found

that

νc(G[CS − 1]) = c⊤y −
γ(G)∑
i=1

+1⊤z = τ cf (G)−
γ(G)∑
i=1

yvi ,

and from Theorem 4.8 we know that νc(G[CS − 1]) = νc(G). Here we also
have yv = 1

2 for all v ∈ V (Cx) because of the unit-weights, and so we find that
τ cf (G) = νc(G)+ 1

2γ(G). In total this gives us νc(G[cS+1]) = νc(G)+γ(G).

4.4 Edge-Stabilizer

In this section we state our results for the edge-stabilizer problem. First, we
generalize a lower bound on the size of an edge-stabilizer, provided in the
unit-capacity setting.

Lemma 4.3. For every edge-stabilizer F , |F | ≥ 1
2γ(G).

Proof. To prove the lemma, by Proposition 3.1, it is enough to show that re-
moving one edge decreases the number of fractional odd cycles by at most two.
Therefore, from now on, we concentrate on proving the following statement:

for all e ∈ E, γ(G \ e) ≥ γ(G)− 2. (4.3)

Let x be a basic maximum-weight fractional c-matching in G \ e with γ(G \ e)
fractional odd cycles. Extend x to G by setting xe = 0. Then x is a basic
fractional c-matching in G.

66

4.4. Edge-Stabilizer

If x has maximum weight in G, then γ(G) ≤ |Cx| = γ(G \ e), and hence (4.3)
holds.

If x does not have maximum weight in G, we can apply Theorem 4.5: we can
move to a basic maximum-weight fractional c-matching x∗ in G in at most two
steps over the edges of PFCM(G, c), and if two steps are needed, the first one
moves to a vertex with xe =

1
2 , and the second one to a vertex with xe = 1.

Suppose only one step was needed. By Theorem 4.6, x∗ = x+αg for α ∈ { 12 , 1}
and g ∈ C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5. Then, by Theorem 4.6, we have |Cx∗ | =
|Cx| ± {0, 1, 2}. So definitely, |Cx∗ | ≤ |Cx| + 2, and consequently, γ(G) ≤
|Cx∗ | ≤ |Cx|+ 2 = γ(G \ e) + 2, yielding (4.3).

Suppose two steps were needed. Let x̂ be the vertex reached after the first
step. By Theorem 4.6, x̂ = x + αg and x∗ = x̂ + βh for α, β ∈ { 12 , 1} and
g, h ∈ C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5. Now note that we must have xe = 0, x̂e =

1
2 and

x∗
e = 1. So α = β = 1

2 , g creates at least one cycle, and h breaks at least one
cycle. Again looking at Theorem 4.6, this gives the following options for g:

• g ∈ C1 and |Cx̂| = |Cx|,
• g ∈ C2 ∪ C4 and |Cx̂| = |Cx|+ 1, since the odd cycle in g must belong to
x̂,

• g ∈ C5 and |Cx̂| = |Cx|+ {0, 2}, since at least one of the odd cycles in g
must belong to x̂.

Hence, |Cx̂| = |Cx|+ {0, 1, 2}. Similarly for h:

• h ∈ C1 and |Cx∗ | = |Cx̂|,
• h ∈ C2 ∪ C4 and |Cx∗ | = |Cx̂| − 1, since the odd cycle in h must belong
to x̂,

• h ∈ C5 and |Cx∗ | = |Cx̂| − {0, 2}, since at least one of the odd cycles in
h must belong to x̂.

Hence, |Cx∗ | = |Cx̂|−{0, 1, 2}. So definitely, |Cx∗ | ≤ |Cx|+2, and consequently,
as before, γ(G) ≤ γ(G \ e) + 2, yielding (4.3).

Koh and Sanità [36] provided an example that shows this bound is tight,
already in the unit-capacity setting. However, in the unit-weight, capacitated
setting we can get a stronger bound. Repeating the proof above, but replacing
the “−2” in (4.3) by “−1” and using that circuits in C1∪C5 are not augmenting
in cardinality, we can prove the following.

Lemma 4.4. In (G, 1, c), for every edge-stabilizer F , |F | ≥ γ(G).

67

Chapter 4. The Stabilizer Problem

Koh and Sanità [36] give a O(∆)-approximation algorithm, where ∆ denotes
the maximum degree in the graph, based on their algorithm for the vertex-
stabilizer problem: instead of removing the vertices, all edges incident to those
vertices are removed. This removes at most ∆ edges per odd cycle, and hence
results in a O(∆)-approximation algorithm. Similarly, we use our algorithm
for the capacity-stabilizer problem (Algorithm 1), and instead of reducing the
capacity of the vertices, remove all edges incident to those vertices, except the
edges e such that e ∈Mx.

Theorem 4.12. The edge-stabilizer problem admits an efficient O(∆)-approx-
imation algorithm.

Proof. Let S = {v1, . . . , vγ(G)} be the set of vertices found by Algorithm 1.
Set F = {δ(v) \Mx : v ∈ S}. The size of F is at most ∆γ(G). We claim that
G \ F is stable, hence this gives us an O(∆)-approximation by Lemma 4.3.

Let x̂ be obtained from x by alternate rounding Ci exposing vi, for all i ∈
{1, . . . , γ(G)}. Note that x̂ is a basic fractional c-matching in G \ F with
|Cx̂| = 0. Let (ŷ, ẑ) be obtained from (y, z) as follows:

ŷv =

{
yv if v /∈ S,

0 if v ∈ S,
ẑuv =


zuv + yu + yv if u, v ∈ S, uv ∈ E \ F,
zuv + yu if u ∈ S, v /∈ S, uv ∈ E \ F,
zuv + yv if u /∈ S, v ∈ S, uv ∈ E \ F,
zuv if u, v /∈ S, uv ∈ E \ F.

One can check that x̂ and (ŷ, ẑ) satisfy complementary slackness in G \ F .
Consequently, x̂ is a basic maximum-weight fractional c-matching in G \ F
with |Cx̂| = 0, and so G \ F is stable.

If we restrict ourselves to unit-weight instances, like for capacity-stabilizers,
we can show that any inclusion-wise minimal edge-stabilizer preserves the size
of a maximum-cardinality c-matching.

Theorem 4.13. In (G, 1, c), for any inclusion-wise minimal edge-stabilizer
F , we have νc(G \ F) = νc(G).

Proof. LetM be a maximum-cardinality c-matching in G such that the overlap
with F is minimum, that is, such that |M ∩ F | is minimum. Suppose for the
sake of contradiction that |M ∩ F | > 0.

Consider the graph G \ (F \ M). Since M is avoided, M is a maximum-
cardinality c-matching in G \ (F \M). Let x be the indicator vector of M ,
then by Theorem 2.2, x is basic. Since F is inclusion-wise minimal, G\(F \M)
is not stable, and thus x is not a maximum fractional c-matching in G\(F \M).

68

4.4. Edge-Stabilizer

So there must be a vertex x∗ of PFCM, adjacent to x, with 1⊤x∗ > 1⊤x. By
Theorem 4.6, x∗ = x + αg, where α ∈ { 12 , 1} and g ∈ C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5.
Since M is maximum, x∗ cannot be integral, so α = 1

2 , and consequently, by
Theorem 4.6, g /∈ C3. Furthermore, the circuits in C1 ∪ C5 are not augmenting
in cardinality, so g ∈ C2 ∪ C4. Let v ∈ V be the only vertex with g(δ(v)) ̸= 0.
The circuits in C2 ∪ C4 are only augmenting in cardinality if g(δ(v)) > 0.
Consequently, x∗(δ(v)) = x(δ(v))+1 = dMv +1. Clearly, we have x∗(δ(v)) ≤ cv,
and so, dMv < cv.

The support of g consists of a (possibly empty) path Pg and an odd cycle
Cg, intersecting at only one vertex, such that the sign of ge alternates. Since
it is feasible to apply g to x, it must be that, if sgn(ge) = −, then xe = 1
(e ∈ M), and if sgn(ge) = +, then xe = 0 (e /∈ M). Since g(δ(v)) > 0, the
first and last edge of g satisfy sgn(ge) = +. Recall that dMv < cv. Consider
the closed vv-walk W = (Pg, Cg, P

−1
g). Then W is a feasible M -augmenting

walk in G \ (F \M).

Claim 4.6. W ∩ F = ∅.

Proof. For the sake of contradiction, suppose that there is some e ∈ W ∩ F .
Then e ∈ M , since all other edges of F were removed. Then there exists an
even-length M -alternating trail T : the part of W starting from v, to (and
including) the edge e. Since dMv < cv and e ∈ M , T is proper. Then M ′ =
M△T is a maximum-cardinality c-matching in G with |M ′ ∩ F | < |M ∩ F |,
contradicting our assumption.

By this claim, W is in G \ F . In addition, we have d
M\F
v ≤ dMv < cv. Thus,

W is a feasible M \ F -augmenting walk in G \ F . By Theorem 5.3, since
G \ F is stable, it follows that M \ F is not maximum in G \ F . Then, by
Theorem 2.1, there is a proper M \ F -augmenting st-trail T in G \ F . Note
that, since T is augmenting in cardinality, the first and last edge of T are not in
M \F . Since W cannot exist for a maximum-cardinality c-matching in G \F ,
by Theorem 5.3, there must be such a trail T that either makes W infeasible,
or overlaps with the edges of W . Note that T is also an M -augmenting trail
in G, but M is maximum in G, so by Theorem 2.1, T is not proper for M in
G.

Since T is proper for M \ F in G \ F , we have, if s ̸= t, d
M\F
s ≤ cs − 1 and

d
M\F
t ≤ ct − 1, if instead s = t, then d

M\F
s ≤ cs − 2. Since T is not proper

for M in G, we have, if s ̸= t, dMs = cs or dMt = ct, if instead s = t, then
dMs ≥ cs − 1. This gives us five cases:

1. s ̸= t, dMs = cs and dMt < ct,

2. s ̸= t, dMs < cs and dMt = ct,

69

Chapter 4. The Stabilizer Problem

3. s ̸= t, dMs = cs and dMt = ct,

4. s = t and dMs = cs − 1,

5. s = t and dMs = cs.

In the first case, since dMs = cs and d
M\F
s ≤ cs − 1, there is at least one

e ∈ δ(s) ∩M ∩ F . Since e ∈ F , we have e /∈ T , which means T ∪ e is a trail.
Note that T ∪ e is M -alternating and has even length. Since dMt < ct and
e ∈M , T ∪e is proper. (If T ∪e is closed, it is still proper, because it has even-
length.) Therefore, M ′ = M△(T ∪ e) is a maximum-cardinality c-matching in
G with |M ′ ∩F | < |M ∩F |, contradicting our assumption. Similar arguments
can be made in the second and fourth case.

For the third and fifth case we take a look at the overlap of T and W . We

know that d
M\F
v ≤ dMv < cv. So, to make W infeasible in G\F , T would need

to increase the degree of v with respect to the matching. This is only possible
if v ∈ {s, t}. However, s and t are both saturated by M (in both the third and
fifth case) and v is not. Hence, T and W must overlap in at least one edge.

We create a new walk W ′ by combining W and T : follow W starting from v
to the first edge e that is also on T , traverse e, then switch to T and follow
T from here to one of its endpoints. Since T and W are both M -alternating
and -augmenting, so is W ′. The part of W from v to and including e is a trail,
this part of W does not overlap with T , and T is a trail, hence W ′ is a trail.
Since T exists in G \ F , and W ∩ F = ∅ by Claim 4.6, we have W ′ ∩ F = ∅.
In both the third and fifth case, the degree of both s and t with respect to M
is strictly larger than their degree with respect to M \F . Hence, δ(s)∩M ∩F
and δ(t) ∩M ∩ F are nonempty. Without loss of generality assume W ′ ends
at s. Let e ∈ δ(s) ∩M ∩ F . Since e ∈ F , we have e /∈ W ′, which means
W ′∪e is a trail. Note that W ′∪e is M -alternating and has even length. Since
dMv < cv and e ∈ M , W ′ ∪ e is proper. Therefore, M ′ = M△(W ′ ∪ e) is a
maximum-cardinality c-matching in G with |M ′∩F | < |M ∩F |, contradicting
our assumption.

We conclude this section with some additional remarks. Note that, as op-
posed to the capacity-stabilizer case, when dealing with edge-removal opera-
tions it is always possible to stabilize a graph without decreasing the weight
of a maximum-weight matching: for example, one could take any maximum-
weight c-matching M in G and remove all edges in E \ M . The previous
theorem shows that, for unit-weight instances, this property comes essentially
for free, as any edge-stabilizer of minimum cardinality is weight-preserving.
However, for general weighted instances, this is not the case, and we can show
that the size of a minimum weight-preserving edge-stabilizer and the size of
a minimum edge-stabilizer can differ by a very large factor, namely Ω(|V |),
already for unit-capacities.

70

4.4. Edge-Stabilizer

Theorem 4.14. There exist graphs (G,w, 1) where the sizes of a mini-
mum edge-stabilizer and a minimum weight-preserving edge-stabilizer differ
by Ω(|V |).

Proof. Let G and M be the graph and matching given in Figure 4.7, respec-
tively. Any matching in G can contain (i) at most one edge of each 3-cycle,

u

v w

a

b1

c1

bk

ck

ε

1
1

2

1

2

2

1

2

Figure 4.7: Let k ≥ 3 be an integer, and 0 < ε < 0.5. The figure shows
a graph (G,w, 1) with k 3-cycles of the form (a, bi, ci) for i = 1, . . . , k.
Edge weights are given next to the edges. The bold edges indicate a
matching M .

which all have a weight of at most 2, (ii) at most one of the edges incident to
w, which both have weight 1, and (iii) the edge ua of weight ε. This gives us
νc(G) ≤ 2k + 1 + ε. In particular, M is the only matching in G that attains
this weight. So, M is the unique maximum-weight matching in G. There are
k feasible M -augmenting walks: (u, a, bi, ci, a, u) for i = 1, . . . , k, hence G is
not stable by Theorem 5.3.

We can stabilize G by removing only two edges: ua and vw. We verify the
stability by giving a matching and a vertex cover of the same value. Let the
matching be wa∪{bici : i ∈ {1, . . . , k}}. The weight of this matching is 2k+1.
Note that the weight decreased by ε. We set the vertex cover y equal to 0
for u, v, w and equal to 1 for a and all k pairs bi, ci. The value of this vertex
cover is 2k + 1. So indeed, the graph is stable. This shows that the size of a
minimum edge-stabilizer is at most two.

As mentioned, M is the unique maximum-weight matching in G. Conse-
quently, any weight-preserving edge-stabilizer has to avoid M . Because the
k feasible M -augmenting walks are edge-disjoint with respect to the edges
from E \M , any weight-preserving edge-stabilizer has to remove at least k
edges.

We have |V | = 3k+3, or equivalently, k = |V |/3− 1. The difference in size of
a minimum edge-stabilizer and a minimum weight-preserving edge-stabilizer

71

Chapter 4. The Stabilizer Problem

in this graph is at least k − 2. So the difference in sizes is Ω(k) = Ω(|V |).

Theorem 9 of Koh and Sanità [36] shows that there is no constant factor
approximation for the minimum edge-stabilizer problem in (G,w, 1), unless
P = NP . We note that their proof actually also shows inapproximability for
the minimum weight-preserving edge-stabilizer problem.

Our last remark is the following. For the vertex-stabilizer problem, the setting
of removing the vertices completely has been analyzed in Section 4.1, and that
of reducing the capacity has been investigated in Section 4.3. One may wonder
whether a similar setting of “partial reduction” also makes sense for the edge-
stabilizer problem: what if one reduces the weight of the edges, instead of
completely removing them? The next theorem suggests that reducing edge
weights might not be that interesting from a bargaining perspective: if the
weight of an edge is decreased, it will not be part of any maximum-weight
c-matching, so the edge could just as well be removed.

Theorem 4.15. Let (G,w, c) be a graph, and let w̃ ∈ RE
≥0 such that (G,w −

w̃, c) is stable and 1⊤w̃ is minimum. For every f ∈ E such that w̃f > 0, the
edge f is not in any maximum-weight c-matching in (G,w − w̃, c).

Proof. For the sake of contradiction let M be a maximum-weight c-matching
in (G,w − w̃, c) with f ∈ M . Let x be the indicator vector of M . Since
(G,w − w̃, c) is stable, there is a fractional vertex cover (y, z) that satisfies
complementary slackness with x:

xe = 0 ∨ yu + yv + ze = we − w̃e ∀e = uv ∈ E

yv = 0 ∨ x(δ(v)) = cv ∀v ∈ V

ze = 0 ∨ xe = 1 ∀e ∈ E

Now, let x′ = x, y′ = y, z′f = zf + w̃f , z
′
e = ze for all e ̸= f , w′

f = 0, and
w′

e = w̃e for all e ̸= f . One can check that x′ and (y′, z′) are a c-matching
and fractional vertex cover in (G,w−w′, c), respectively, and that they satisfy
complementary slackness. Hence, (G,w − w′, c) is stable, but 1⊤w′ < 1⊤w̃,
contradicting that 1⊤w̃ is minimum.

In case of unit-capacities there are no z variables in the dual. To make the
proof still valid, it is enough to increase the y-value of one of the vertices of f
with w̃f .

72

Chapter 5

The M-Stabilizer Problem

In this chapter we discuss the M -vertex- and M -edge-stabilizer problem, in
Sections 5.1 and 5.2, respectively. We defined these problems before as follows.

The M-vertex-stabilizer problem: Given a graph G = (V,E) with edge
weights w ∈ RE

≥0 and vertex capacities c ∈ ZV
≥0, and a c-matching M in G, find

a minimum-cardinality subset S ⊆ V of vertices such that νcf (G\S) = νc(G\S)
and M is a maximum-weight c-matching in G \ S.
The M-edge-stabilizer problem: Given a graph G = (V,E) with edge
weights w ∈ RE

≥0 and vertex capacities c ∈ ZV
≥0, and a c-matching M in G, find

a minimum-cardinality subset F ⊆ E of edges such that νcf (G\F) = νc(G\F)
and M is a maximum-weight c-matching in G \ F .

Section 5.1 is based on (part of) [V1].

Notation. In this chapter we denote a weighted, capacitated graph (G,w, c)
together with a c-matching M as [(G,w, c),M]. For X ⊆ V , we denote by
(G,w, c) \X the graph G \X with the edge weights w restricted to the edges
in G \X and the vertex capacities c restricted to the vertices V \X. We say
that [(G,w, c),M] is stable if νcf (G) = νc(G) and M is a maximum-weight
c-matching in G.

5.1 M-Vertex-Stabilizer

In this section we give our M -vertex-stabilizer results. First, in Section 5.1.1
we describe an auxiliary construction to reduce a given problem instance to a
unit-capacity instance. Then, in Section 5.1.2 we give our M -vertex-stabilizer
algorithm.

73

Chapter 5. The M -Stabilizer Problem

5.1.1 Auxiliary Construction

We use a construction given in Section 4.1 of Farczadi et al. [21], to transform
a weighted, capacitated graph G and c-matching M into a weighted, unit-
capacity auxiliary graph G′ and matching M ′.

Construction: [(G,w, c),M]→ [(G′, w′, 1),M ′]

1. For each v ∈ V , create the set Cv = {v1, . . . , vcv} of cv copies of v, add
Cv to V (G′), and initialize J(v) = {1, . . . , cv}.

2. For each uv ∈ M , add a single edge uivj to both E(G′) and M ′ with
edge-weight wuv, where i ∈ J(u) and j ∈ J(v) are chosen arbitrarily.
Remove i and j from J(u) and J(v), respectively.

3. For each edge uv ∈ E \M , add an edge uivj to E(G′) with edge-weight
wuv, for all ui ∈ Cu and vj ∈ Cv.

See Figure 5.1 for an example. In this figure it is easy to see that the matching
M ′ in G′ is not maximum, even though M is maximum in G.1

t u v x

y

z

cba

(a) Original graph.

t1 u1

v1

v2

x1

x2

y1

z1

c1

b1

b2

a1

(b) Auxiliary graph.

Figure 5.1: Example of the auxiliary construction on an instance
[(G,w, c),M]. Capacities are all 1 except for cv = cx = cb = 2. Weights
are all 1 except for wbc = 0.5. The matching is displayed as bold edges.

Remark 5.1. If [(G,w, c),M] has auxiliary [(G′, w′, 1),M ′], and X ⊆ V
is any set of vertices which avoids M , then [(G,w, c) \ X,M] has auxiliary
[(G′, w′, 1) \X ′,M ′], where X ′ = ∪v∈XCv.

We define a map η to go back from the auxiliary graph G′ to the original graph
G. Specifically, if ui ∈ V (G′) ∩ Cu for some u ∈ V , then η(ui) = u, and if
uivj ∈ E(G′) such that ui ∈ Cu, vj ∈ Cv for some u, v ∈ V , then η(uivj) = uv.
This extends in the obvious way to paths, cycles, walks, and so on.

We need the following theorem.

1It was stated in Corollary 1 in Farczadi et al. [21] that M is maximum if and only if M ′

is maximum, but this example shows the forward direction to be false.

74

5.1. M -Vertex-Stabilizer

Theorem 5.1. [(G,w, c),M] is not stable if and only if the graph G′ in
the auxiliary [(G′, w′, 1),M ′] contains at least one of the following: (i) an
M ′-augmenting flower; (ii) an M ′-augmenting bi-cycle; (iii) a proper M ′-
augmenting path; (iv) an M ′-augmenting cycle.

Proof. It was proven in Theorem 2 in Farczadi et al. [21] that [(G,w, c),M]
is not stable if and only if the graph G′ in the auxiliary [(G′, w′, 1),M ′] is
not stable, or the matching M ′ in the auxiliary [(G′, w′, 1),M ′] does not have
maximum weight. If G′ is not stable (and M ′ has maximum weight), then
G′ contains an M ′-augmenting flower or bi-cycle, see Theorem 1 in Koh and
Sanità [36]. If M ′ does not have maximum-weight, G′ must contain a proper
M ′-augmenting path or cycle, by standard matching theory.

We refer to an augmenting structure of type (i) − (iv) in Theorem 5.1 as a
basic augmenting structure.

The following lemma will be useful.

Lemma 5.1. Given [(G,w, c),M] and auxiliary [(G′, w′, 1),M ′], let P be a
feasible M ′-augmenting walk. Then, η(P) is a feasible M -augmenting walk.

Proof. Let e1 = uv and e2 = vw be two consecutive edges on P . Then η(e1)
and η(e2) are the corresponding edges on η(P), and they are both incident
with η(v). Hence, η(P) is a walk. For an edge e on P , we have e ∈M ′ if and
only if η(e) ∈M . In addition, w′

e = wη(e). So, η(P) is an M -augmenting walk.
Suppose P = (u; e1, . . . , ek; v). Feasibility of P means that either e1 ∈ M ′,
or u is M ′-exposed. Likewise for ek and v. It follows that either η(e1) ∈ M ,
or η(u) is M -unsaturated. Likewise for η(ek) and η(v). This means η(P) is
feasible.

5.1.2 Algorithm

The goal of this section is to prove the following theorem.

Theorem 5.2. The M -vertex-stabilizer problem on weighted, capacitated
graphs admits an efficient 2-approximation algorithm. Furthermore, the algo-
rithm is exact if the given c-matching M has maximum weight.

A natural strategy would be to first apply the auxiliary construction described
in Section 5.1.1 to reduce to unit-capacity instances, and then apply the al-
gorithm proposed by Koh and Sanità [36] which solves the problem exactly.
However, there is a critical issue with this strategy. Namely, the auxiliary con-
struction applied to unstable instances does not always preserve maximality

75

Chapter 5. The M -Stabilizer Problem

of the corresponding matchings, as shown in Figure 5.1. In that example, the
matching M ′ is not maximum in G′. The algorithm of Koh and Sanità [36], if
applied to an instance where the given matching is not maximum, is not guar-
anteed to find an optimal solution, but only a 2-approximate one (see Theorem
12 in Koh and Sanità [36]). In addition, since the auxiliary construction splits
a vertex into multiple ones, we may even get infeasible solutions. As a concrete
example of this, the algorithm of Koh and Sanità [36] applied to the instance
of Figure 5.1b includes b2 in its proposed solution. Mapping this solution to
our capacitated instance would imply to remove b, which is clearly not allowed
as b is M -covered.

To overtake this issue, we do not apply the algorithm of Koh and Sanità [36] as
a black-box, but use parts of it (highlighted in Lemma 5.2 below) in a careful
way. In particular, we use it to compute a sequence of feasible augmenting
walks in G′. We actually show that the walks in G′ which might create the
issue described before when mapped backed to G, are the walks in which at
least one edge of G is traversed more than once in opposite directions, and that
have two distinct endpoints. When this happens, we prove that we can modify
the walk and get one where the endpoints coincide, which is still feasible and
augmenting. In this latter case, we can then either correctly identify a vertex
to remove (the unique endpoint), or determine that the instance cannot be
stabilized.

Lemma 5.2. Let G′ be a unit-capacity graph, and M ′ a matching of G′.

(a) For a given M ′-exposed vertex u, one can compute a feasible M ′-aug-
menting walk starting at u of length at most 3|V (G′)|, or determine that
none exists, in polynomial time.

(b) A feasible M ′-augmenting uv-walk contains a feasible M ′-augmenting
uv-path (proper if u ̸= v), an M ′-augmenting cycle, an M ′-augmenting
flower rooted at u or v, or an M ′-augmenting bi-cycle. Furthermore, this
augmenting structure can be computed in polynomial time.

Proof. (a) When given a graph G′, a matching M ′, a vertex u, and an integer
k, Algorithm 3 in Koh and Sanità [36] computes a feasible M ′-augmenting
uv-walk of length at most k, or determines none exist, for all v ∈ V (G′).
Correctness is shown in Lemmas 7 and 8 in Koh and Sanità [36]. The al-
gorithm runs in time that is polynomial in k, |V (G′)|, and |E(G′)|. We use
this algorithm and select an arbitrary v for which a uv-walk is returned, or
determine that no such walk starting at u exists. Since we set k = 3|V (G′)|,
this procedure terminates in polynomial time.

(b) Lemma 9 in Koh and Sanità [36] states that a feasible M ′-augmenting
uv-walk contains a feasible M ′-augmenting uv-path, an M ′-augmenting cycle,
an M ′-augmenting flower rooted at u or v, or an M ′-augmenting bi-cycle. By

76

5.1. M -Vertex-Stabilizer

Proposition 2.1 the path is proper if u ̸= v. Lemma 9 in Koh and Sanità [36]
is proven in a constructive way, hence it also gives a way to compute the
augmenting structure in polynomial time.

We next define ties.

Definition 5.1. Given [(G,w, c),M] with auxiliary [(G′, w′, 1),M ′], and an
M ′-alternating path P ′, a tie in P ′ is a pair of unmatched edges {ab, cd} on
P ′ such that for some distinct u, v ∈ V , either (i) {a, c} ⊆ Cu and {b, d} ⊆ Cv

or (ii) {a, d} ⊆ Cu and {b, c} ⊆ Cv. We say P ′ is tieless if it does not contain
a tie.

We now show that if the auxiliary construction does not preserve maximality
of the c-matching M , then we must have ties in all proper M ′-augmenting
paths and cycles.

Lemma 5.3. Given [(G,w, c),M] with auxiliary [(G′, w′, 1),M ′], if M is a
maximum-weight c-matching in G, then all proper M ′-augmenting paths and
cycles contain ties.

Proof. We prove this by contraposition. Suppose that there is a proper M ′-
augmenting path or cycle P ′ that is tieless. Note that P ′ is also feasible. By
Lemma 5.1, P = η(P ′) is a feasible M -augmenting walk. Since P ′ is tieless,
there is a bijection between E(P ′) and E(P), and so, as P ′ does not repeat
edges, neither does P . Hence P is a feasible M -augmenting trail. We show
that P is proper.

If P ′ is an M ′-augmenting cycle, P is a closed M -augmenting trail of even
length. It follows that dP△M

v = dMv ≤ cv for all vertices v on P , and hence P
is proper.

Now suppose P ′ is a proper M ′-augmenting path. Let P ′ = (ui; e
′
1, . . . , e

′
k; vj)

and u = η(ui), v = η(vj), e1 = η(e′1) and ek = η(e′k). Note that, because P ′ is
proper, e′1 /∈M if and only if ui is M

′-exposed. Likewise for e′k and vj .

Case 1: u = v. If at most one of ui and vj is M ′-exposed, then at least one
of e′1 and e′k is in M ′ and hence at least one of e1 and ek is in M . Therefore,
dP△M
u ≤ dMu ≤ cu. If both ui and vj are M ′-exposed, then e′1, e

′
k /∈ M ′ and

hence e1, ek /∈ M . Therefore, dP△M
u = dMu + 2. By construction there are cu

copies of u, and since ui and vj are already two of those copies, and they are
exposed, we have dMu ≤ cu − 2. Thus dP△M

u ≤ cu.

Case 2: u ̸= v. If e′1 ∈M ′, then e1 ∈M , and so we have dP△M
u = dMu −1 ≤ cu.

If e′1 /∈ M ′, then e1 /∈ M , and so we have dP△M
u = dMu + 1. Using the same

reasoning as in case 1, we can conclude that dMu ≤ cu − 1 because ui is M ′-
exposed, and therefore dP△M

u ≤ cu. The argument is analogous for v.

77

Chapter 5. The M -Stabilizer Problem

In all cases P is a proper M -augmenting trail. It follows by Theorem 2.1 that
M is not a maximum-weight c-matching in G.

We now define the operation of traceback, which we will use to modify the
feasible augmenting walks, when needed.

Definition 5.2. Given [(G,w, c),M] and an M -alternating walk P = (u; e1,
. . . , ek; v) which repeats an edge in opposite directions, let t be the least in-
dex such that et = es for some s < t, and es and et are traversed in op-
posite directions by P . Then the u-traceback and v-traceback of P are de-
fined as the walks tb(P, u) = (e1, . . . , et, es−1, es−2, . . . , e1) and tb(P, v) =
(ek, ek−1, . . . , es, et+1, et+2, . . . , ek).

The next lemma explains how to use the traceback operation.

Lemma 5.4. Given [(G,w, c),M] such that M has maximum weight, and aux-
iliary [(G′, w′, 1),M ′], let P ′ = (ui; e

′
1, . . . , e

′
k; vj) be a proper M ′-augmenting

path such that both ui and vj are M ′-exposed and η(ui) ̸= η(vj). Then, (i)
η(P ′) is an M -alternating walk that repeats an edge in opposite directions, and
(ii) tb(η(P ′), η(ui)) and tb(η(P ′), η(vj)) are feasible M -alternating walks and
at least one of them is M -augmenting.

Proof. Let P = η(P ′) = (u; e1, . . . , ek; v). By Lemma 5.1, P is a feasible M -
augmenting walk, and also proper by Proposition 2.1, since u ̸= v. In order
to use the traceback operation, we must show that P traverses some edge in
opposite directions. By Lemma 5.3 we already have that P ′ contains a tie,
and hence that P traverses some edge twice. We now show that there must
exist at least one edge that is traversed in opposite direction. Suppose not,
let t be the least index such that et = es for some s < t. Decompose P as
(P1, es, P2, et, P3).

Claim 5.1. If P traverses es and et in the same direction, then (P1, es, P3) is
a shorter proper M -augmenting walk.

Proof. For notation, define P+
2 = (P2, et). By choice of t, P+

2 is an M -

alternating closed trail of even length. It follows that d
P+

2 △M
v = dMv ≤ cv for

all vertices v on P+
2 , and hence P+

2 is proper. Since M has maximum weight,
Theorem 2.1 implies that P+

2 cannot be M -augmenting. However, P is M -
augmenting, which means the augmenting part must come from P \P+

2 . Hence,
(P1, es, P3) is an M -augmenting walk. It is proper because P is proper.

By this claimW = (P1, es, P3) is a shorter properM -augmenting walk. W also
necessarily repeats an edge, because otherwise W is a proper M -augmenting
trail, contradicting that M has maximum weight, by Theorem 2.1. Then we

78

5.1. M -Vertex-Stabilizer

can apply the claim again, to find an even shorter proper M -augmenting walk.
This argument can be repeated until eventually we reach a contradiction.

Thus there is at least one edge traversed in opposite direction, hence we can
use the traceback operation. Since P is M -alternating (because it is M -
augmenting), tb(P, u) and tb(P, v) are also M -alternating. Furthermore, since
ui and vj are M

′-exposed, u and v are M -unsaturated. It follows that tb(P, u)
and tb(P, v) are feasible.

That leaves to show that at least one of them is M -augmenting. For notation,
let t be the least index such that et = es for some s < t and et and es are
traversed in opposite direction. As before, decompose P as (P1, es, P2, et, P3).
Define P++

2 = (es, P2, et), Pu = tb(P, u), and Pv = tb(P, v). Note that
Pu = (P1, P

++
2 , P−1

1) and Pv = (P−1
3 , (P++

2)−1, P3).

Case 1: w(P1 \M) − w(P3 \M) > w(P1 ∩M) − w(P3 ∩M). Because P is
M -augmenting, we know that

w(P1 \M) + w(P++
2 \M) + w(P3 \M)

> w(P1 ∩M) + w(P++
2 ∩M) + w(P3 ∩M). (5.1)

Adding these inequalities, we obtain

w(Pu \M) = 2w(P1 \M) + w(P++
2 \M)

> 2w(P1 ∩M) + w(P++
2 ∩M) = w(Pu ∩M).

(5.2)

Hence, Pu is M -augmenting.

Case 2: w(P1 \M)−w(P3 \M) < w(P1 ∩M)−w(P3 ∩M). Subtracting this
inequality from Equation (5.1), we obtain

w(Pv \M) = w(P++
v \M) + 2w(P3 \M)

> w(P++
2 ∩M) + 2w(P3 ∩M) = w(Pv ∩M).

(5.3)

Hence, Pv is M -augmenting.

Case 3: w(P1 \M) − w(P3 \M) = w(P1 ∩M) − w(P3 ∩M). Adding this
inequality to Equation (5.1) we obtain Equation (5.2) again, and subtracting
it from Equation (5.1), we obtain Equation (5.3) again. Hence, both Pu and
Pv are M -augmenting.

The next theorem is standard.

Theorem 5.3. [(G,w, c),M] is stable if and only if G does not contain a
feasible M -augmenting walk.

79

Chapter 5. The M -Stabilizer Problem

Proof. (⇒) Assume there exists a feasible M -augmenting walk W . Since W
is augmenting, w(W \M) > w(W ∩M), and since W is feasible, xM/W (ε) is
a fractional c-matching. Together they imply

νcf (G) ≥ w⊤xM/W (ε) = w(M)− εw(W ∩M) + εw(W \M) > w(M),

that is, the instance [(G,w, c),M] is not stable.

(⇐) Assume the instance is not stable. Then by Theorem 5.1, the graph
G′ from the auxiliary [(G′, w′, 1),M ′] contains a basic augmenting structure,
which clearly is a feasible M ′-augmenting walk P . Then η(P) is a feasible
M -augmenting walk, by Lemma 5.1.

The algorithm is stated in Algorithm 3. We are now ready to prove Theo-
rem 5.2.

Proof of Theorem 5.2. Let [(G,w, c),M] be the input for the M -vertex-stabili-
zer problem, with auxiliary [(G′, w′, 1),M ′]. Algorithm 3 iteratively considers
an M ′-exposed vertex ui, and computes a feasible M ′-augmenting walk U
starting at ui, if one exists. Lemma 5.1 implies that η(U) is a feasible M -
augmenting walk in G. Theorem 5.3 implies that we need to remove at least
one vertex of the walk η(U) to stabilize the instance. Note that every vertex
a ̸= ui, vj of U is M ′-covered, and hence, η(a) is M -covered. Therefore,
the only vertices we can potentially remove are η(ui) or η(vj). Hence, if
both η(ui) and η(vj) are M -covered, the instance cannot be stabilized and
Algorithm 3 checks this in line 10. If only one among η(ui) and η(vj) is M -
covered, then necessarily we have to remove the M -exposed vertex among the
two. Algorithm 3 checks this in line 12 and 14. Note that, by Remark 5.1,
instead of computing a new auxiliary for the modified G, we can just remove
Cη(ui) (resp. Cη(vj)) from G′. Similarly, if η(ui) = η(vj) and η(ui) is M -
exposed, we necessarily have to remove η(ui). Algorithm 3 checks this in line
17. If instead η(ui) ̸= η(vj), and both are M ′-exposed, we apply Lemma 5.2(b)
to find a basic augmenting structure W contained in U . Once again, we know
by Lemma 5.1 and Theorem 5.3 that we need to remove a vertex in η(W). In
case W is a cycle or bi-cycle, all vertices of η(W) are M -covered so the instance
cannot be stabilized and Algorithm 3 checks this in line 21. In case W is a M ′-
augmenting flower with base ui or vj , Algorithm 3 accordingly removes η(ui)
or η(vj) as all other vertices in η(W) are M -covered, in line 24 and 26. If W is
a proper (because η(ui) ̸= η(vj)) M ′-augmenting path and M has maximum
weight in G, by Lemma 5.4 we know that we can find a feasible M -augmenting
walk, where the only M -exposed vertex is either η(ui) or η(vj). Once again,
this implies that this vertex must be removed. Algorithm 3 does so in lines 31
and 33. Finally, if W is a proper M ′-augmenting path and M does not have

80

5.1. M -Vertex-Stabilizer

Algorithm 3 finding an M -vertex-stabilizer

input: [(G,w, c),M]
1: let Mmax indicate if M has maximum weight in G
2: compute the auxiliary [(G′, w′, 1),M ′]
3: initialize S ← ∅, L←M ′-exposed vertices
4: while L ̸= ∅ do
5: select ui ∈ L and compute a feasible M ′-augmenting walk starting at

ui using Lemma 5.2(a)
6: if no such walk exists then
7: L← L \ {ui}
8: else
9: consider the computed feasible M ′-augmenting uivj-walk

10: if both η(ui) and η(vj) are M -covered then
11: return infeasible
12: else if η(ui) is M -covered and η(vj) is not then
13: S ← S ∪ η(vj), G← G \ η(vj), G′ ← G′ \Cη(vj), L← L \Cη(vj)

14: else if η(vj) is M -covered and η(ui) is not then
15: S ← S ∪ η(ui), G← G \ η(ui), G

′ ← G′ \Cη(ui), L← L \Cη(ui)

16: else
17: if η(ui) = η(vj) then
18: S ← S∪η(ui), G← G\η(ui), G

′ ← G′\Cη(ui), L← L\Cη(ui)

19: else
20: find a basic M ′-augmenting structure W contained in the

uivj-walk using Lemma 5.2(b)
21: if W is an M ′-augmenting cycle or bi-cycle then
22: return infeasible
23: else if W is an M ′-augmenting flower rooted at ui then
24: S ← S ∪ η(ui), G ← G \ η(ui), G

′ ← G′ \ Cη(ui), L ←
L \ Cη(ui)

25: else if W is an M ′-augmenting flower rooted at vj then
26: S ← S ∪ η(vj), G ← G \ η(vj), G′ ← G′ \ Cη(vj), L ←

L \ Cη(vj)

27: else if W is a proper M ′-augmenting uivj-path then
28: if Mmax then
29: compute tb(η(W), η(ui)) and tb(η(W), η(vj))
30: if tb(η(W), η(ui)) is M -augmenting then
31: S ← S ∪ η(ui), G ← G \ η(ui), G

′ ← G′ \ Cη(ui),
L← L \ Cη(ui)

32: else if tb(η(W), η(vj)) is M -augmenting then
33: S ← S ∪ η(vj), G ← G \ η(vj), G′ ← G′ \ Cη(vj),

L← L \ Cη(vj)

34: end if

81

Chapter 5. The M -Stabilizer Problem

35: else
36: S ← S ∪{η(ui), η(vj)}, G← G \ {η(ui), η(vj)}, G′ ←

G′ \
(
Cη(ui) ∪ Cη(vj)

)
, L← L \

(
Cη(ui) ∪ Cη(vj)

)
37: end if
38: end if
39: end if
40: end if
41: end if
42: end while
43: if w(M) < νcf (G) then

44: return infeasible
45: else
46: return S
47: end if

maximum weight in G, Algorithm 3 removes both η(ui) and η(vj) in line 36,
even though it might only be necessary to remove one of them.

From the discussion so far, it follows that when we exit the while loop each
vertex in S is either a necessary vertex to be removed from G, in order to
stabilize the instance, or it is one of two vertices for which it is necessary
to remove at least one. Therefore, for any M -vertex-stabilizer S∗ we have
|S∗| ≥ 1

2 |S|. It follows that Algorithm 3 is a 2-approximation algorithm.
Furthermore, if M has maximum weight in G, then each vertex in S is a
necessary vertex to be removed from G, in order to stabilize the instance. It
follows that Algorithm 3 is exact in this case.

We now argue that either removing all vertices in S is also sufficient, or the
instance cannot be stabilized. Suppose that the M -vertex-stabilizer instance
given by G\S and M is not stable. Theorem 5.1 implies that (G\S)′ contains
a basic augmenting structure Q. Note that Q cannot be an M ′-augmenting
flower with exposed root, or a proper M ′-augmenting path with at least one
exposed endpoint. To see this, observe that a flower and path are feasible M ′-
augmenting walks of length at most 3|V (G′)| and |V (G′)|, respectively. Hence,
they would have been found by Algorithm 3 in line 5, contradicting that Q
exists in (G \ S)′. It follows that Q is a basic augmenting structure where
all vertices are M ′-covered. By Lemma 5.1 η(Q) is a feasible M -augmenting
walk where all vertices are M -covered. This implies that the instance cannot
be stabilized. Furthermore, using the ε-augmentation of η(Q) we can obtain
a fractional c-matching whose value is strictly greater than w(M). Hence,
w(M) < νcf (G \ S). Algorithm 3 correctly determines this in line 43. This
proves correctness of our algorithm.

82

5.2. M -Edge-Stabilizer

Finally, we argue about the running time of the algorithm. Note that each
operation that the algorithm performs can be done in polynomial time. Fur-
thermore, after each iteration of the while loop, we either determine that the
instance cannot be stabilized, or remove at least one vertex from L. There-
fore, the while loop can be executed at most |V (G′)| ≤ n2 times. The result
follows.

5.2 M-Edge-Stabilizer

In this section we give our M -edge-stabilizer results. First we give a sketch
of the 2-approximation algorithm of Bock et al. [11]. Then, we generalize this
algorithm to capacitated graphs and arbitrary given (c-)matchings. On the
other hand, we show that a straightforward generalization of this algorithm to
weighted graphs does not work.

Let us sketch the idea of the 2-approximation algorithm. Given a graph
G = (V,E) and a maximum matching M in G, Bock et al. [11] formulate
the following covering linear program to find an M -edge-stabilizer, where
V (M) ⊆ V is the set of vertices covered by M .

min
∑

e∈E\M
ae

s.t. yu + yv = 1 ∀uv ∈M

yu + yv + ae ≥ 1 ∀e = uv ∈ E \M and u, v ∈ V (M)

yv + ae ≥ 1 ∀e = uv ∈ E \M and v ∈ V (M), u /∈ V (M)

y ∈ RV (M)
≥0 , a ∈ RE\M

≥0

(5.4)

To obtain the 2-approximation algorithm, Bock et al. [11] construct an auxil-
iary bipartite instance. They then solve (5.4) on this auxiliary instance, and
map it back to a 2-approximate solution of the original instance.

Let us take a closer look at (5.4). The first constraint ensures that all edges
in M are covered by y. The subsequent two constraints ensure that all edges
not in M , but with at least one of its endpoints covered by M , are covered by
y and a. Since M is a maximum, and hence maximal, matching, for each edge
at least one of its endpoints is covered by M . So these three constraints cover
all edges. We can easily allow for arbitrary matchings, by adding a constraint
for the edges not in M and with both endpoints exposed by M :

ae ≥ 1 ∀e = uv ∈ E \M and u, v /∈ V (M).

The vector y in (5.4) represents a fractional vertex cover. To include vertex
capacities, we replace y by a fractional vertex cover (y, z). Note that y is

83

Chapter 5. The M -Stabilizer Problem

defined on V (M) instead of on V . This is because the goal is to have y
satisfy complementary slackness with M , which means yv should be zero for all
vertices v exposed byM . Similarly, we want that (y, z) satisfies complementary
slackness with M , which means yv should be zero for all vertices v unsaturated
by M , and ze should be zero for all edges not in M . Hence, we define y on
V (M), where V (M) is now redefined as the set of vertices saturated by M ,
and z on M .

So, given a graph G = (V,E) with vertex capacities c ∈ ZV
≥0, and a c-matching

M in G, we obtain the following linear program, where V (M) ⊆M is the set
of vertices saturated by M .

min
∑

e∈E\M
ae

s.t. yu + yv + ze = 1 ∀e = uv ∈M and u, v ∈ V (M)

yv + ze = 1 ∀e = uv ∈M and v ∈ V (M), u /∈ V (M)

ze = 1 ∀e = uv ∈M and u, v /∈ V (M)

yu + yv + ae ≥ 1 ∀e = uv ∈ E \M and u, v ∈ V (M)

yv + ae ≥ 1 ∀e = uv ∈ E \M and v ∈ V (M), u /∈ V (M)

ae ≥ 1 ∀e = uv ∈ E \M and u, v /∈ V (M)

y ∈ RV (M)
≥0 , z ∈ RM

≥0, a ∈ RE\M
≥0

(5.5)

Theorem 5.4. The M -edge-stabilizer problem on unit-weight, capacitated
graphs admits an efficient 2-approximation algorithm.

Our proof follows the proof of Proposition 3 of Bock et al. [11].

Proof. Consider the linear program (5.5). The first three constraints ensure
that each edge in M is covered by y and z and that |M | = ∑

v∈V (M) cvyv +∑
e∈M ze. The subsequent three constraints ensure that all edges not in M

are covered by y and a. Observe that there is one covering constraint for every
edge.

If a feasible solution (y, z, a) of (5.5) satisfies a ∈ {0, 1}E\M , then F = {e ∈
E : ae = 1} is an M -edge-stabilizer. This is because (y, z) is a fractional vertex
cover in G\F , M is a c-matching in G\F and |M | =∑v∈V (M) cvyv+

∑
e∈M ze.

Likewise, if we have an M -edge-stabilizer F , then we can construct a feasible
solution (y, z, a) of (5.5) satisfying a ∈ {0, 1}E\M as follows. Set ae = 1 if
e ∈ F and ae = 0 otherwise. Take (y, z) to be a minimum fractional vertex
cover in G \F . Since G \F is stable, (y, z) and M form a primal-dual optimal
pair for νcf (G \ F) and τ cf (G \ F). Hence, by complementary slackness, yv = 0
if v is not saturated by M and ze = 0 if e is not in M , and so supp(y) ⊆ V (M)
and supp(z) ⊆M . Thus, (y, z, a) is a feasible solution to (5.5).

84

5.2. M -Edge-Stabilizer

Claim 5.2. For a bipartite graph G = (V,E) and c-matching M in G, the
linear program (5.5) has an integral optimal solution (y∗, z∗, a∗).

Proof. Let A denote the coefficient matrix of the constraints in (5.5) for G.
Then A has the form

A =
[
A′ IM IE\M

]
,

where A′ is an |E|×|V (M)| submatrix of the edge-vertex incidence matrix AG

ofG, and IM and IE\M are |E|×|M | and |E|×|E\M | submatrices, respectively,
of the |E| × |E| identity matrix I, after removing the columns corresponding
to the edges not in M and the edges in M , respectively. Observe that the
matrix

[
AG I I

]
is totally unimodular since G is bipartite and thus AG is

totally unimodular. Since A is a (column-indexed) submatrix of
[
AG I I

]
,

we conclude that A is totally unimodular as well. In addition, the right hand
sides of the constraints in (5.5) are integral. Together these imply that there is
an integral optimal solution (y∗, z∗, a∗) of (5.5). (See for example Schrijver [47]
for properties of totally unimodular matrices.)

We use the above claim to find an M -edge-stabilizer in G that is at most twice
as large as the minimum M -edge-stabilizer by constructing a bipartite graph
G′ = (V1 ∪ V2, E

′), where Vi = {vi : v ∈ V } and E′ = {u1v2, u2v1 : uv ∈ E},
and a c-matching M ′ = {u1v2, u2v1 : uv ∈ M} in G′. Let (5.5)’ and (5.5)
denote the corresponding linear programs for G′ and G, respectively.

We first show that a minimum M -edge-stabilizer F in G induces a solution
(y′, z′, a′) of (5.5)’ with cost 2|F | and integral a′. Since G\F is stable, there ex-
ists a fractional vertex cover (y, z) in G\F that satisfies complementary slack-
ness with M . Like before, this means that supp(y) ⊆ V (M) and supp(z) ⊆M .
We set y′vi = yv for all v ∈ V (M) and i = 1, 2, z′u1v2 = z′u2v1 = zuv for all
uv ∈ M , and a′u1v2 = a′u2v1 = 1 for all uv ∈ F and zero otherwise. Then
(y′, z′, a′) is a feasible solution of (5.5)’ with cost 2|F | and integral a′.

Next, we show that an optimal integral solution of (5.5)’ can be used to find a
half-integral solution of (5.5). Let (y∗, z∗, a∗) be an optimal integral solution of
(5.5)’. By the previous paragraph, the cost of (y∗, z∗, a∗) is bounded by 2|F |.
We define (y, z, a) by yv = 1

2 (y
∗
v1+y∗v2) for all v ∈ V (M), zuv = 1

2 (z
∗
u1v2+z∗u2v1)

for all uv ∈M , and auv = max{a∗u1v2 , a
∗
u2v1} for all uv ∈ E \M . This defines

a feasible solution for (5.5), which can be seen as follows. For uv ∈ M and
u, v ∈ V (M), we have

yu + yv + zuv = 1
2

(
y∗u1

+ y∗u2

)
+ 1

2

(
y∗v1 + y∗v2

)
+ 1

2

(
z∗u1v2 + z∗u2v1

)
= 1

2

(
y∗u1

+ y∗v2 + z∗u1v2

)
+ 1

2

(
y∗u2

+ y∗v1 + z∗u2v1

)
= 1

2 + 1
2 = 1,

85

Chapter 5. The M -Stabilizer Problem

and for uv ∈ E \M and u, v ∈ V (M), we have

yu + yv + auv = 1
2

(
y∗u1

+ y∗u2

)
+ 1

2

(
y∗v1

+ y∗v2
)
+max

{
a∗u1v2

, a∗u2v1

}
≥ 1

2

(
y∗u1

+ y∗u2

)
+ 1

2

(
y∗v1

+ y∗v2
)
+ 1

2

(
a∗u1v2 + a∗u2v1

)
= 1

2

(
y∗u1

+ y∗v2 + a∗u1v2

)
+ 1

2

(
y∗u2

+ y∗v1 + a∗u2v1

)
≥ 1

2 + 1
2 = 1.

The cases for uv ∈ M and uv ∈ E \M with v ∈ V (M), u /∈ V (M) and with
u, v /∈ V (M) follow in an analogous manner. As the cost of (y∗, z∗, a∗) is at
most 2|F |, the cost of the solution (y, z, a) of (5.5) is also bounded by 2|F |.
Moreover, a is integral and thus defines an M -edge-stabilizer in G of size at
most 2|F |, for any minimum M -edge-stabilizer F .

Now we take a look at what happens if we include edge weights. We observed
that the vector y in (5.4) represents a fractional vertex cover. In unit-weight
graphs fractional vertex covers have to satisfy yu+yv ≥ 1 for all edges uv ∈ E.
In weighted graphs this becomes yu + yv ≥ wuv. We can incorporate a similar
change in (5.4) to include edge-weights. In particular, we change the right
hand side from 1 to wuv, and we multiply ae by we in the constraints, as we
still want to have 0 ≤ a ≤ 1.

min
∑

e∈E\M
ae

s.t. yu + yv = wuv ∀uv ∈M

yu + yv + weae ≥ we ∀e = uv ∈ E \M and u, v ∈ V (M)

yv + weae ≥ we ∀e = uv ∈ E \M and v ∈ V (M), u /∈ V (M)

weae ≥ we ∀e = uv ∈ E \M and u, v /∈ V (M)

y, a ≥ 0

y ∈ RV (M), a ∈ RE\M

(5.6)

For the 2-approximation algorithm to work, it is important that on the auxil-
iary bipartite graph the linear program has an integral optimal solution. This
integral solution then maps to a solution in the original graph with integral a,
which means we can obtain an M -edge-stabilizer from it. However, now that
we have included edge weights, the linear program does not have an integral
optimal solution in general, also not on bipartite graphs. In particular, (5.6)
has an unbounded integrality gap, which we show with the next example. Note
that the matching in the example has maximum weight.

Consider the graph G and matchingM given in Figure 5.2. The linear program

86

5.2. M -Edge-Stabilizer

u v

t

2W − 1

WW

Figure 5.2: GraphG with vertex names next to the vertices, edge weights
next to the edges, and a maximum-weight matchingM = {uv} indicated
by the bold edge. W can be any positive (large) real number.

with respect to this graph is given in (5.7).

min atu + atv

s.t. yu + yv = 2W − 1

yu +Watu ≥W

yv +Watv ≥W

y, a ≥ 0

y ∈ R2, a ∈ R2

(5.7)

Using the constraints, we can find a lower bound on the objective value:

atu + atv ≥ 1− 1
W yu + 1− 1

W yv = 2− 1
W (yu + yv)

= 2− 1
W (2W − 1) = 1

W .

The solution given by yu = yv = W − 1
2 , and atu = atv = 1

2W , is feasible and
achieves this lower bound. Hence, fractionally, the optimal objective value is
1
W . However, when we require integrality, the lower bound of 1

W still needs
to be satisfied, and so we get an objective value of at least one. Thus, the
integrality gap is at least 1

1/W = W , and we can choose W to be arbitrarily

large.

If we create an auxiliary bipartite graph for this instance, we get a lower
bound of 2

W on the objective. And again, fractionally this can be attained,
but integrally this results in a lower bound of one. Hence, the integrality gap
is at least 1

2W .

87

Part III

Cooperative Matching Games

Chapter 6

Core Separation of 2-Matching Games

In this chapter we discuss the problem of separating over the core of 2-matching
games, which we defined before as follows.

Determine if a given allocation y ∈ RV belongs to the core, or find a coalition
that violates the corresponding constraint in

y(S) ≥ νc(G[S]) for all S ⊂ V, y(V) = νc(G). (6.1)

In Section 6.1 we prove that separating over the core of 2-matching games
is solvable in polynomial time. In Section 6.2 we show that there exists a
compact extended formulation that describes the core of 2-matching games.

This chapter is based on [V2].

6.1 Separating over the Core

Theorem 6.1. Separating over the core of 2-matching games is solvable in
polynomial time.

The first important observation in Biró et al. [10] is that for any S ⊆ V , a
maximum-weight 2-matching in G[S] is composed of cycles and paths, which
means the core of 2-matching games can alternatively be described by the
following (smaller) set of constraints:

y(V) = νc(G), (6.2a)

y(C) ≥ w(C), for all cycles C ∈ C, (6.2b)

y(P) ≥ w(P), for all paths P ∈ P . (6.2c)

91

Chapter 6. Core Separation of 2-Matching Games

Here, C stands for the set of cycles C ⊆ E in G with cv = 2 for all v ∈ V (C),
and P stands for the set of paths P ⊆ E with cv = 2 for all inner vertices
on P . We shortened y(V (C)) and y(V (P)) to y(C) and y(P), respectively.
With this observation, separating over the core for a given vector y reduces
to checking whether y(V) = νc(G), which can be done in polynomial time
(a maximum-weight c-matching in a graph G can be computed in polynomial
time, see for example Letchford et al. [40]), and to separating over the set of
constraints for cycles, and the set of constraints for paths.

Biró et al. [10] show how to separate over the set of cycle constraints, by reduc-
ing the problem to the tramp steamer problem (also known as the minimum
cost-to-time ratio problem), which we introduce now. Let G = (V,E) be a
graph with edge weights p, w ∈ RE

≥0. The tramp steamer problem is to find a
cycle C ⊆ E of G that maximizes the ratio w(C)/p(C). The tramp steamer
problem is well-known to be solvable in polynomial time (see for example
Dantzig et al. [15], Eiselt and Sandblom [19], and Lawler [38]).

The following lemma is proved in Biró et al. [10] (see the proof of their Theorem
12). We report a proof for completeness.

Lemma 6.1 (Biró et al. [10]). Separating over the constraints for cycles in
Equation (6.2b) is solvable in polynomial time.

Proof. Let V2 = {v ∈ V : cv = 2} and G2 = G[V2]. In G2 = (V2, E2) we
transfer the given allocations yv to the edges by setting puv = (yu + yv)/2 for
all uv ∈ E2. This defines edge weights p ∈ RE2 such that the core constraints
for cycles are equivalent to

max
C∈C

w(C)

p(C)
≤ 1. (6.3)

Hence we obtained an instance of the tramp steamer problem, which is poly-
nomial-time solvable as mentioned before. Note that by solving the above
maximization problem we either find that all the constraints for cycles in
Equation (6.2b) are satisfied or we end up with a particular cycle C with
y(C) = p(C) < w(C).

Next, we discuss the flaw related to the separation of the path constraints in
Equation (6.2c).

Path separation of Biró et al. [10]. Assuming that all the constraints
for cycles in (6.2b) are satisfied by the given vector y ∈ RV , Biró et al. [10]
process the path constraints separately for all possible endpoints u0, v0 ∈ V
(with u0 ̸= v0) and all possible lengths k = 1, . . . , n − 1. Let Pk(u0, v0) ⊆ P

92

6.1. Separating over the Core

denote the set of u0 − v0-paths of length k in G. They construct an auxiliary
graph Gk(u0, v0), that is a subgraph of G × Pk+1, the product of G with a

path of length k. To this end, let V
(1)
2 , . . . , V

(k−1)
2 be k − 1 copies of V2. The

vertex set of Gk(u0, v0) is then {u0, v0}∪V (1)
1 ∪ · · · ∪V (k−1)

2 . Denote the copy

of v ∈ V2 in V
(r)
2 by v(r). The edges of Gk(u0, v0) and their weights w are

defined as

u0v
(1) for u0v ∈ E with weight wu0v = yu0

+ yv/2− wu0v,

u(r−1)v(r) for uv ∈ E with weight wuv = (yu + yv)/2− wuv,

u(k−1)v0 for uv0 ∈ E with weight wuv0 = yu/2 + yv0 − wuv0
.

They claim that y(P) ≥ w(P) holds for all P ∈ P if and only if the shortest
u0 − v0-path in Gk(u0, v0) (w.r.t. w) has weight ≥ 0 for all u0 ̸= v0 and
k = 1, . . . , n− 1.

However, the next example shows that this claim is not true. Consider the
graph in Figure 6.1. One can check that νc(G) = 12 and that the given

s
1

0

t

1

0
u
2

2

v
2

10

w

1

01

1

10 1

Figure 6.1: Graph with edge weights w on the edges, vertex labels in
the vertices, vertex capacities c above the vertices, and an allocation y
below the vertices.

allocation y is in the core. In the auxiliary graph G4(s, t), defined above, there
is a path of total weight strictly less than zero: P = (s, u(1), v(2), u(3), t) has
weight

w(P) = ys + 2yu + yv + yt − wsu − 2wuv − wut = 14− 22 < 0.

According to their claim, this should mean that y(P) ≥ w(P) does not hold
for all P ∈ P, that is, y is not a core allocation.

Our path separation. We now show how to fix the above issue, again by
relying on the tramp steamer problem.

Lemma 6.2. Separating over the constraints for paths in Equation (6.2c) is
solvable in polynomial time.

93

Chapter 6. Core Separation of 2-Matching Games

Proof. We assume that all the constraints for cycles in Equation (6.2b) are
satisfied by the given vector y ∈ RV . We first process all paths of length zero
and one separately, that is, the vertices and edges, by checking

yv ≥ 0, for all v ∈ V,

yu + yv ≥ wuv, for all uv ∈ E.

We process the remaining constraints for paths separately for all possible end-
points s ̸= t ∈ V . We create an auxiliary graph G(s, t) as the subgraph of
G induced by the vertex set V2 ∪ {s, t}. We add the edge st to G(s, t) with
wst = 0, replacing the original edge st if it exists. Like we did for the con-
straints for cycles, we transfer the given allocations yv to the edges by setting
puv = (yu + yv)/2 for all edges uv in G(s, t). If cs = ct = 2, then we solve the
tramp steamer problem on G(s, t) directly. If cs = 1 and ct = 2, then we solve
ds − 1 (where ds is the degree of s in G(s, t)) instances of the tramp steamer
problem: we remove all edges incident to s in G(s, t) except for st and one
other edge e, and solve the tramp steamer problem on this variant of G(s, t).
We repeat this for all possible edges e incident to s, unequal to st. The case
cs = 2 and ct = 1 can be handled similarly. If cs = ct = 1, then we solve
(ds − 1)(dt − 1) instances of the tramp steamer problem: we remove all edges
incident to both s and t except st, one other edge e incident to s and one other
edge f incident to t, and solve the tramp steamer problem on this variant of
G(s, t). We repeat this for all possible combinations of the edges e and f .

Suppose there is a path P ∈ P of length at least two, such that y(P) <
w(P). Let P = (s; e1, . . . , ek; t), k ≥ 2. There is a variant of G(s, t) which
contains both e1 and ek. We construct a cycle C in this graph from P : C =
(s; e1, . . . , ek, ts; s). Then:

w(C) = we1 + · · ·+ wek + wst = w(P) + 0 = w(P),

p(C) = pe1 + · · ·+ pek + pst = y(P),

which means we have w(C)/p(C) = w(P)/y(P) > 1. So, solving the tramp
steamer problem on this graph, we find that the maximum is > 1.

Suppose we solve the tramp steamer problem on some variant of G(s, t), for
some s and t, and find that the maximum is > 1, and that this is attained
by the cycle C. It is straightforward to check that we must have s, t ∈ V (C),
and in particular st ∈ C, as otherwise cv = 2 for all v ∈ V (C), which means
C ∈ C, contradicting that all the constraints for cycles in Equation (6.2b) are
satisfied. Let P be the st-path obtained from C by removing st. Then:

w(P) = w(C)− wst = w(C)− 0 = w(C),

y(P) = p(C),

which means we have w(P)/y(P) = w(C)/p(C) > 1. So the constraint for P
is violated.

94

6.2. Compact Extended Formulation

Note that Lemma 6.1 and Lemma 6.2, together with checking (6.2a), yield a
proof of Theorem 6.1.

6.2 Compact Extended Formulation

Theorem 6.2. There exists a compact extended formulation that describes the
core of 2-matching games.

To give a compact extended formulation of the core, we essentially need to
rewrite the inequality in Equation (6.3) in a compact form.

Suppose we are given a graph G′ = (V ′, E′), with edge weights p, w ∈ RE′

≥0,
and that we want to check whether this graph satisfies the inequality in Equa-
tion (6.3). As a first step, define the edge costs cuv = puv − wuv for all edges
uv ∈ E′. Note that Equation (6.3) is violated if and only if G′ contains a
negative cost cycle C with respect to c, since

w(C)/p(C) > 1 ⇐⇒ 0 >
∑
uv∈C

cuv =
∑
uv∈C

(puv − wuv) = p(C)− w(C).

We therefore focus on checking if a graph G′ = (V ′, E′) with edge costs c ∈
RE′

contains a negative cost cycle. There are several efficient ways to detect
negative cost cycles. For example one can rely on the notion of potential in
undirected graphs with general edge weights, as described by Sebő [48]. A
combinatorial algorithm also follows from Dudycz and Katarzyna [18] (that
actually works for a broader class of generalized matching problems). For our
extended formulation, we rely on the LP formulation designed by Barahona [6]
for finding negative cost cycles. Recall that a cut B ⊆ E′ is a set of edges of
the form δ(X) for some ∅ ≠ X ⊂ V ′. We need the following theorem.

Theorem 6.3 (Seymour [49]). The cone generated by the incidence vectors of
the cycles of a graph is defined by the system

xe − x(B \ e) ≤ 0, for each cut B, for every edge e ∈ B,

x ≥ 0.

Using the system of constraints from Theorem 6.3, we can design an LP for-
mulation as in Section 3 in Barahona [6], where they define the LP below with
the goal of minimizing the cost of a cycle. (In Barahona [6] they also add the

95

Chapter 6. Core Separation of 2-Matching Games

constraint
∑

e∈E′ xe = 1, because they are interested in cycles of minimum
mean weight, but here this constraint is not needed.)

min
∑
e∈E′

cexe

s.t. xe − x(B \ e) ≤ 0, for each cut B, for every edge e ∈ B

x ≥ 0

(6.4)

One observes that G′ contains a negative cost cycle if and only if there exists
a solution to this LP whose objective value is negative (indeed, the LP in this
case is unbounded). This is easily seen as if C is a cycle with negative cost, its
characteristic vector xC yields an LP solution with negative objective value.
Vice versa, if x∗ is a feasible solution for the LP with negative objective value,
by Theorem 6.3 x∗ can be expressed as a conic combination of cycles, implying
that at least one such cycle must have negative cost.

To make the above LP compact, we rely on flows. Recall that an st-cut is a set
of edges of the form δ(X) where X contains exactly one of s and t. For a fixed
edge e = st, the system of inequalities consisting of x ≥ 0 and the inequalities
of (6.4) for e, is then equivalent to

x(B) ≥ xe, for each st-cut B in G′ \ e,
x ≥ 0,

(6.5)

which tells us that all st-cuts in G′ \ e have capacity (w.r.t. x) at least xe. By
the max flow min cut theorem of Ford and Fulkerson [24], this is equivalent
to the existence of a st-flow (w.r.t. the capacity function x) in G′ \ e of value
xe. Therefore there exists an x that satisfies the constraints in Equation (6.5)
if and only if there exists a pair (x, y) that satisfies

∑
v:uv∈E′\e

(yuv − yvu) =


0, if u ̸= s, u ̸= t,

xe, if u = s,

−xe, if u = t,

for all u ∈ V ′,

0 ≤ yuv, yvu ≤ xe, for all e = uv ∈ E′ \ e.
Finally, we can rewrite the LP in Equation (6.4) as

min
∑
e∈E′

cexe,

s.t.
∑

v:uv∈E′\e

(
yeuv − yevu

)
=


0, if u ̸= s, u ̸= t,

xe, if u = s,

−xe, if u = t,

for all u ∈ V ′ and e = st ∈ E′,

0 ≤ yeuv, y
e
vu ≤ xe, for all e = uv ∈ E′ \ e and e ∈ E′.

96

6.2. Compact Extended Formulation

The dual of this LP is

max 0

s.t.
γe
u − γe

v − λe
uv

γe
v − γe

u − λe
vu

}
≤ 0, for all uv ∈ E′ \ e and e ∈ E′,

γe
t − γe

s +
∑

uv∈E′\e

(
λe
uv + λe

vu

)
≤ ce, for all e = st ∈ E′,

λe
uv, λ

e
vu ≥ 0, for all uv ∈ E′ \ e and e ∈ E′.

(6.6)

Combining all of the steps, a graph G′ satisfies the constraint in Equation (6.3)
if and only if the LP in Equation (6.6) attains a feasible solution.

We are now ready to state the compact extended formulation. For convenience,
let G be the set of graphs consisting of G2 and all variants of G(s, t) for all
s ̸= t ∈ V . From Section 6.1, we know we need to check y(V) = νc(G),
yv ≥ 0 for all v ∈ V , yu + yv ≥ wuv for all uv ∈ E, and that all graphs
G′ = (V ′, E′) ∈ G satisfy the constraint in Equation (6.3). So, in total we get

y(V) = νc(G),

yv ≥ 0, for all v ∈ V,

yu + yv ≥ wuv, for all uv ∈ E,

γe
u − γe

v − λe
uv

γe
v − γe

u − λe
vu

}
≤ 0, for all uv ∈ E′ \ e and e ∈ E′,

γe
t − γe

s +
∑

uv∈E′\e
λe
uv + λe

vu ≤ (ys + yt)/2− we, for all e = st ∈ E′,

λe
uv, λ

e
vu ≥ 0, for all uv ∈ E′ \ e and e ∈ E′.


for all G′ = (V ′, E′) ∈ G.

(6.7)
The size of this formulation easily follows from the size of G. Consider the
graph G(s, t) for some s ̸= t ∈ V . In the worst case, cs = ct = 1, which means
there are (ds − 1)(dt − 1) variants of G(s, t). Therefore

|G| ≤ 1 +
∑

s̸=t∈V

(ds − 1)(dt − 1) = O(n4).

The formulation in Equation (6.7) has

n+ |G| · (O(m2) +O(nm)) = O(n4m2) +O(n5m)

variables, and

1 + n+m+ |G| · (O(m2) +O(m) +O(m2)) = O(n4m2)

constraints, that is, it has polynomial size. This proves Theorem 6.2.

97

Chapter 7

Two-Stage Assignment Games

In this chapter we discuss the two-stage stochastic assignment game, which we
defined before as

min
y∈core(G0)

ES∼D

[
min

yS∈core(GS)

∑
v∈V0∩VS

λv

[
yv − ySv

]+]
. (2SAG)

In Sections 7.1 and 7.2 we consider the two-stage stochastic assignment game
when the probability distribution D is given explicitly and implicitly, respec-
tively. Lastly, we discuss the multistage vertex cover problem in Section 7.3,
which is related to the two-stage stochastic assignment game when the prob-
ability distribution is given explicitly.

This chapter is based on [V5].

Preliminaries Let τ(G) be the value of a minimum integral vertex cover,
that is, τf (G) with the additional requirement y ∈ ZV . It follows from Königs
theorem (ν(G) = τ(G) for bipartite graphs) and LP theory (ν(G) ≤ νf (G) =
τf (G) ≤ τ(G)) that τf (G) = ν(G) for bipartite graphs. Shapley and Shu-
bik [50] showed that the core of an assignment game is precisely the set of
minimum fractional vertex covers, that is,

core(G) =
{
y ∈ RV

≥0 : yu + yv ≥ 1 ∀uv ∈ E, 1⊤y = ν(G)
}
.

From this and τf (G) = ν(G) it readily follows that the core of each assignment
game is nonempty: there is always a minimum fractional vertex cover. This
is important for our two-stage stochastic assignment game, because we are
assured that in both stages the core is nonempty.

Observe that in any core element y ≤ 1, because yu + yv ≥ 1 for all edges in a
maximum matching M , 1⊤y = ν(G) = |M |, and y ≥ 0.

99

Chapter 7. Two-Stage Assignment Games

7.1 Explicit Distribution

Suppose the distribution D is given explicitly by a list of scenarios S and their
respective probabilities of occurrence {pS}S∈S . Here we consider the problem
of minimizing the absolute difference, instead of the positive difference, that
is, |yv − ySv | instead of [yv − ySv]

+. We solve this in such a way that one can
later choose either option, or even [ySv − yv]

+. Using the scenarios S, we can
expand the expectation in (2SAG):

min
y∈core(G0)

∑
S∈S

pS

[
min

yS∈core(GS)

∑
v∈V0∩VS

λv

∣∣yv − ySv
∣∣] . (2SAG-expl)

We can rewrite this as the following LP.

min
∑
S∈S

pS
∑

v∈V0∩VS

λv(δ
S
v + dSv)

s.t. yu + yv ≥ 1 ∀uv ∈ E0

1⊤y = ν(G0)

y ∈ RV0

≥0

ySu + ySv ≥ 1 ∀uv ∈ ES ,∀S ∈ S
1⊤yS = ν(GS) ∀S ∈ S
yS ∈ RVS

≥0 ∀S ∈ S
yv − ySv ≤ δSv ∀v ∈ V0 ∩ VS ,∀S ∈ S
ySv − yv ≤ dSv ∀v ∈ V0 ∩ VS ,∀S ∈ S
δS ∈ RV0∩VS

≥0 ∀S ∈ S
dS ∈ RV0∩VS

≥0 ∀S ∈ S

(2SAG-LP)

Observe that if we change δSv + dSv in the objective to δSv or dSv , then the
objective we consider is [yv − ySv]

+ or [ySv − yv]
+, respectively.

Let V = V0 ∪
⋃

S∈S VS . This LP has O(|V ||S|) variables and O(|V |2|S|)
constraints. So it has size polynomial in the input size, which means we
can solve (2SAG-expl) in polynomial time, by solving (2SAG-LP). Using an
auxiliary linear program we show that the feasible region of (2SAG-LP) is an
integral polyhedron.

Theorem 7.1. The feasible region of (2SAG-LP) is an integral polyhedron.

We consider (2SAG-LP) with an arbitrary objective, and show that for each
objective we can find an integral optimal solution. Since for each extreme point

100

7.1. Explicit Distribution

of a polyhedron there is an objective such that the extreme point is the unique
optimal solution, this proves that the polyhedron is integral. We consider the
following objective, where α can take any value, β ≥ 0 and b ≥ 0. Note that if
βS
v < 0 or bSv < 0 for any v ∈ V0∩VS , S ∈ S, then the LP becomes unbounded,

and so there are no extreme points in those directions.

min
∑
v∈V0

αvyv +
∑
S∈S

∑
v∈VS

αS
v y

S
v +

∑
S∈S

∑
v∈V0∩VS

βS
v δ

S
v + bSv d

S
v

We will formulate a maximum flow problem on an auxiliary graph, and com-
pute its dual LP. It is known that the constraint matrix of a maximum flow
LP is totally unimodular (TU). The dual LP has the transpose as constraint
matrix, which is then also TU. Since in addition the right hand side of the
dual constraints are integral, this means the feasible region of the dual is an
integral polyhedron. (See for example Schrijver [47] for properties of TU ma-
trices.) Finally, we show that we can map an optimal dual solution to an
optimal solution for (2SAG-LP).

Let V1, V2 ⊆ V0 ∪
⋃

S∈S VS be the bipartition of G0 ∪
⋃

S∈S GS . Let

ε =
1

1 +
∑

v∈V0
|αv|+

∑
S∈S

∑
v∈VS

|αS
v |+

∑
S∈S

∑
v∈V0∩VS

βS
v + bSv

.

Note that ε > 0. We create the auxiliary graph G′ = (V ′, A) as follows. Let

V ′ = {s, t} ∪ V0 ∪
{
vS : v ∈ VS , S ∈ S

}
.

The arc set A contains the following arcs:

• sv for all v ∈ V0 ∩ V1, with flow-capacity 1 + εαv;

• svS for all v ∈ VS ∩ V1, S ∈ S, with flow-capacity 1 + εαS
v ;

• vSv for all v ∈ (V0 ∩ VS) ∩ V1, S ∈ S, with flow-capacity εβS
v ;

• vvS for all v ∈ (V0 ∩ VS) ∩ V1, S ∈ S, with flow-capacity εbSv ;

• vt for all v ∈ V0 ∩ V2, with flow-capacity 1 + εαv;

• vSt for all v ∈ VS ∩ V2, S ∈ S, with flow-capacity 1 + εαS
v ;

• vvS for all v ∈ (V0 ∩ VS) ∩ V2, S ∈ S, with flow-capacity εβS
v ;

• vSv for all v ∈ (V0 ∩ VS) ∩ V2, S ∈ S, with flow-capacity εbSv ;

• uv for all uv ∈ E0, such that u ∈ V1, v ∈ V2, without upperbound on
the flow-capacity;

• uSvS for all uv ∈ ES , S ∈ S, such that u ∈ V1, v ∈ V2, without
upperbound on the flow-capacity.

101

Chapter 7. Two-Stage Assignment Games

s

vS

v

(a) Example of the source/V1 side.

v

vS

t

(b) Example of the sink/V2 side.

Figure 7.1: Example of part of the auxiliary graph, where dashed arcs
indicate the edges corresponding with E0 and ES .

s

aS1

aS2

a

b

c

bS1

cS2

t

Figure 7.2: Example of the auxiliary graph for the instance given by
V0 = {a, b, c}, E0 = {ab, ac}, and S = {S1, S2} where VS1

= {a, b},
ES1

= {ab}, and VS2
= {a, c}, ES2

= {ac}.

Figure 7.1 shows an example of the auxiliary graph in general, and Figure 7.2
shows an example of the auxiliary graph of a specific instance.

Let 1[...] be 1 if the statement in between the brackets is true, and 0 if the
statement is false. We formulate the maximum flow problem in G′ as an LP
in Equation (7.1). For this LP to have a feasible solution, the flow-capacities
need to be nonnegative: 1+ εαv ≥ 0 for all v ∈ V0, 1+ εαS

v ≥ 0 for all v ∈ VS ,
S ∈ S, εβS

v ≥ 0 for all v ∈ V0 ∩ VS , S ∈ S, and εbSv ≥ 0 for all v ∈ V0 ∩ VS ,
S ∈ S. The latter two are satisfied as ε > 0 and we set β, b ≥ 0. For any
v ∈ V0, we have

αv ≥ −|αv| ≥ −
(
1 +

∑
v∈V0

|αv|+
∑
S∈S

∑
v∈VS

|αS
v |+

∑
S∈S

∑
v∈V0∩VS

βS
v + bSv

)

= −1

ε
,

and so, since ε > 0, we have 1+εαv ≥ 1+ε−1
ε = 0. The same argument works

for αS
v for any v ∈ VS , S ∈ S.

The dual of the flow LP in Equation (7.1) is given in Equation (7.2).

Lemma 7.1. The feasible region of (7.2) is an integral polyhedron.

102

7.1. Explicit Distribution

max
∑

v∈V0∩V1

fsv +
∑
S∈S

∑
v∈VS∩V1

fsvS

s.t. fsv +
∑

S∈S:v∈VS

(fvSv − fvvS)−
∑

u:uv∈E0

fvu = 0 ∀v ∈ V0 ∩ V1

fsvS + 1[v ∈ V0](fvvS − fvSv)−
∑

u:uv∈ES

fvSuS = 0

∀v ∈ VS ∩ V1,∀S ∈ S∑
u:uv∈E0

fuv +
∑

S∈S:v∈VS

(fvSv − fvvS)− fvt = 0 ∀v ∈ V0 ∩ V2∑
u:uv∈ES

fuSvS + 1[v ∈ V0](fvvS − fvSv)− fvSt = 0

∀v ∈ VS ∩ V2,∀S ∈ S
fsv ≤ 1 + εαv ∀v ∈ V0 ∩ V1

fsvS ≤ 1 + εαS
v ∀v ∈ VS ∩ V1,∀S ∈ S

fvt ≤ 1 + εαv ∀v ∈ V0 ∩ V2

fvSt ≤ 1 + εαS
v ∀v ∈ VS ∩ V2,∀S ∈ S

fvSv ≤ εβS
v ∀v ∈ (V0 ∩ VS) ∩ V1,∀S ∈ S

fvvS ≤ εbSv ∀v ∈ (V0 ∩ VS) ∩ V1,∀S ∈ S
fvvS ≤ εβS

v ∀v ∈ (V0 ∩ VS) ∩ V2,∀S ∈ S
fvSv ≤ εbSv ∀v ∈ (V0 ∩ VS) ∩ V2,∀S ∈ S
f ∈ RA

≥0

(7.1)

103

Chapter 7. Two-Stage Assignment Games

min
∑
v∈V0

yv +
∑
S∈S

∑
v∈VS

ySv

+ ε

(∑
v∈V0

αvyv +
∑
S∈S

∑
v∈VS

αS
v y

S
v +

∑
S∈S

∑
v∈V0∩VS

βS
v δ

S
v + bSv d

S
v

)
s.t. γv + yv ≥ 1 ∀v ∈ V0 ∩ V1

γS
v + ySv ≥ 1 ∀v ∈ VS ∩ V1,∀S ∈ S

γv − γS
v + δSv ≥ 0 ∀v ∈ (V0 ∩ VS) ∩ V1,∀S ∈ S

γS
v − γv + dSv ≥ 0 ∀v ∈ (V0 ∩ VS) ∩ V1,∀S ∈ S

γv − γu ≥ 0 ∀uv ∈ E0 such that u ∈ V1, v ∈ V2

γS
v − γS

u ≥ 0 ∀uv ∈ ES such that u ∈ V1, v ∈ V2,∀S ∈ S
− γv + yv ≥ 0 ∀v ∈ V0 ∩ V2

− γS
v + ySv ≥ 0 ∀v ∈ VS ∩ V2,∀S ∈ S

γS
v − γv + δSv ≥ 0 ∀v ∈ (V0 ∩ VS) ∩ V2,∀S ∈ S

γv − γS
v + dSv ≥ 0 ∀v ∈ (V0 ∩ VS) ∩ V2,∀S ∈ S

y ∈ RV0

≥0

yS ∈ RVS

≥0 ∀S ∈ S
δS ∈ RV0∩VS

≥0 ∀S ∈ S
dS ∈ RV0∩VS

≥0 ∀S ∈ S
γ ∈ RV0

γS ∈ RVS ∀S ∈ S

(7.2)

104

7.1. Explicit Distribution

Proof. The constraint matrix of a maximum flow LP is TU; in particular the
constraint matrix of (7.1) is TU.

The transpose of a TU matrix is TU. The constraint matrix of a dual LP is
the transpose of the constraint matrix of the primal LP. Together they imply
that the constraint matrix of (7.2) is TU.

Finally, a polyhedron with a TU constraint matrix and integral right hand
side is an integral polyhedron; in particular, the feasible region of (7.2) is an
integral polyhedron.

We can obtain an integral optimal solution for (7.2) by solving (7.2) directly,
or combinatorially, as follows. First we find an optimal flow in the auxiliary
graph. The flow can then be used to obtain an optimal solution for (7.2), by
using complementary slackness. Finally, if this is not an integral solution, then
in particular it is not an extreme point solution. So we can use this solution
to go to an extreme point solution, which is integral by Lemma 7.1.

We map an integral optimal solution for (7.2) to an integral optimal solution
for (2SAG-LP) in two steps. First we map it to the following LP.

min 1⊤y +
∑
S∈S

1⊤yS

+ ε

(∑
v∈V0

αvyv +
∑
S∈S

∑
v∈VS

αS
v y

S
v +

∑
S∈S

∑
v∈V0∩VS

βS
v δ

S
v + bSv d

S
v

)
s.t. yu + yv ≥ 1 ∀uv ∈ E0

y ∈ RV0

≥0

ySu + ySv ≥ 1 ∀uv ∈ ES ,∀S ∈ S
yS ∈ RVS

≥0 ∀S ∈ S
yv − ySv ≤ δSv ∀v ∈ V0 ∩ VS ,∀S ∈ S
ySv − yv ≤ dSv ∀v ∈ V0 ∩ VS ,∀S ∈ S
δS ∈ RV0∩VS

≥0 ∀S ∈ S
dS ∈ RV0∩VS

≥0 ∀S ∈ S

(7.3)

Lemma 7.2. We can obtain an optimal solution for (7.3) from an optimal
solution for (7.2).

Proof.

Claim 7.1. Any feasible solution for (7.3) can be mapped to a feasible solution
for (7.2) with the same objective value.

105

Chapter 7. Two-Stage Assignment Games

Proof. Let µ̂ = (ŷ, ŷS for S ∈ S, δ̂S for S ∈ S, d̂S for S ∈ S) be a feasible
solution for (7.3). We extend it to a solution µ̂ext for (7.2) by setting γ̂v = 1−ŷv
for all v ∈ V0 ∩ V1, γ̂v = ŷv for all v ∈ V0 ∩ V2, γ̂

S
v = 1− ŷSv for all v ∈ VS ∩ V1,

S ∈ S, and γ̂S
v = ŷSv for all v ∈ VS ∩ V2, S ∈ S. It is clear that µ̂ext has the

same objective value as µ̂, as the objective functions of the two linear programs
are the same and do not involve the γ variables. We next show that µ̂ext is
feasible.

The constraints γv + yv ≥ 1, γS
v + ySv ≥ 1, −γv + yv ≥ 0 and −γS

v + ySv ≥ 0 of
(7.2) are satisfied by µ̂ext by definition. Nonnegativity of y, yS , δS and dS for
all S ∈ S are satisfied by µ̂ext, because µ̂ is feasible for (7.3).

Let S ∈ S and v ∈ (V0 ∩ VS) ∩ V1. We have

γ̂v − γ̂S
v + δ̂Sv = 1− ŷv − (1− ŷSv) + δ̂Sv = ŷSv − ŷv + δ̂Sv ≥ 0,

and
γ̂S
v − γ̂v + d̂Sv = 1− ŷSv − (1− ŷv) + d̂Sv = ŷv − ŷSv + d̂Sv ≥ 0,

where both times the last inequality follows from µ̂’s feasibility for (7.3). Sim-
ilarly, we have for S ∈ S and v ∈ (V0 ∩ VS) ∩ V2

γ̂S
v − γ̂v + δ̂Sv = ŷSv − ŷv + δ̂Sv ≥ 0,

and
γ̂v − γ̂S

v + d̂Sv = ŷv − ŷSv + d̂Sv ≥ 0.

Let uv ∈ E0 such that u ∈ V1 and v ∈ V2. We have

γ̂v − γ̂u = ŷv − (1− ŷu) = ŷv + ŷu − 1 ≥ 0.

Finally, let S ∈ S and uv ∈ ES such that u ∈ V1 and v ∈ V2. We have

γ̂S
v − γ̂S

u = ŷSv − (1− ŷSu) = ŷSv + ŷSu − 1 ≥ 0.

Claim 7.2. Any feasible solution to (7.2) can be mapped to a feasible solution
to (7.3) with the same objective value.

Proof. Let µ̂ = (ŷ, ŷS for S ∈ S, δ̂S for S ∈ S, d̂S for S ∈ S, γ̂, γ̂S for S ∈ S)
be a feasible solution for (7.2). We restrict it to a solution µ̂res for (7.3) by
disregarding the γ variables. It is clear that µ̂res has the same objective value
as µ̂, as the objective functions of the two linear programs are the same and
do not involve the γ variables. We next show that µ̂res is feasible.

First observe that µ̂res ≥ 0.

106

7.1. Explicit Distribution

Let uv ∈ E0 such that u ∈ V1 and v ∈ V2. We have

ŷu + ŷv = (γ̂u + ŷu) + (γ̂v − γ̂u) + (−γ̂v + ŷv) ≥ 1 + 0 + 0 = 1.

Similarly, let S ∈ S and uv ∈ ES such that u ∈ V1 and v ∈ V2. We have

ŷSu + ŷSv = (γ̂S
u + ŷSu) + (γ̂S

v − γ̂S
u) + (−γ̂S

v + ŷSv) ≥ 1 + 0 + 0 = 1.

Let S ∈ S, v ∈ (V0 ∩VS)∩V1. We will show that without loss of generality we
can assume that γ̂v + ŷv = 1 and γ̂S

v + ŷSv = 1. Consequently, we have

δ̂Sv + ŷSv − ŷv = δ̂Sv + ŷSv − ŷv + γ̂S
v − γ̂S

v + γ̂v − γ̂v

= (δ̂Sv + γ̂v − γ̂S
v) + (γ̂S

v + ŷSv)− (γ̂v + ŷv)

≥ 0 + 1− 1 = 0,

and

d̂Sv + ŷv − ŷSv = d̂Sv + ŷv − ŷSv + γ̂v − γ̂v + γ̂S
v − γ̂S

v

= (d̂Sv + γ̂S
v − γ̂v) + (γ̂v + ŷv)− (γ̂S

v + ŷSv)

≥ 0 + 1− 1 = 0.

Now, let S ∈ S, v ∈ (V0 ∩ VS) ∩ V2. We will also show that without loss of
generality we can assume that −γ̂v + ŷv = 0 and −γ̂S

v + ŷSv = 0. Consequently,
we have

δ̂Sv + ŷSv − ŷv = δ̂Sv + ŷSv − ŷv + γ̂S
v − γ̂S

v + γ̂v − γ̂v

= (δ̂Sv + γ̂S
v − γ̂v) + (−γ̂S

v + ŷSv)− (−γ̂v + ŷv)

≥ 0 + 0− 0 = 0,

and

d̂Sv + ŷv − ŷSv = d̂Sv + ŷv − ŷSv + γ̂v − γ̂v + γ̂S
v − γ̂S

v

= (d̂Sv + γ̂v − γ̂S
v) + (−γ̂v + ŷv)− (−γ̂S

v + ŷSv)

≥ 0 + 0− 0 = 0,

This finishes the feasibility proof of µ̂res.

To show that we can indeed assume without loss of generality that γ̂v+ ŷv = 1
for v ∈ V0∩V1, suppose it does not hold, so: γ̂v+ ŷv > 1. If ŷv > 0, then lower
ŷv by min{ŷv, 1− γ̂v} (this does not affect feasibility as ŷv is contained in only
this one constraint, and it improves the objective). If now γ̂v+ ŷv = 1, then we
are done. If not, then it must be that ŷv = 0 and γ̂v > 1. Let 0 < η ≤ γ̂v − 1
and lower γ̂v by η: γ̂′

v = γ̂v − η (this does not change the objective). By

107

Chapter 7. Two-Stage Assignment Games

definition of η, we still have γ̂′
v + ŷv ≥ 1. Let u ∈ V2 such that uv ∈ E0, then

we have

γ̂u − γ̂′
v = γ̂u − (γ̂v − η) = γ̂u − γ̂v + η ≥ η > 0.

If v /∈ VS for all S ∈ S, then the solution with γ̂v replaced by γ̂′
v is feasible. If

there is at least one S ∈ S such that v ∈ VS , then we have

γ̂S
v − γ̂′

v + d̂Sv = γ̂S
v − (γ̂v − η) + d̂Sv ≥ η > 0,

for all S ∈ S such that v ∈ VS . If also γ̂′
v − γ̂S

v + δ̂Sv ≥ 0 for some choice of η,
then the solution with γ̂v replaced by γ̂′

v is again feasible.

So now suppose that there is some S ∈ S with v ∈ VS , such that for all choices
of η, this latter constraint is not satisfied. Then it must be that γ̂v−γ̂S

v +δ̂Sv = 0.
We can make this constraint work if we also decrease γ̂S

v by η: (γ̂S
v)

′ = γ̂S
v − η

(this does not change the objective). Like before, it is clear that the constraint
γS
u − γS

v ≥ 0 is still satisfied, as we increase the left hand side. The constraint
γS
v − γv + dSv ≥ 0 is also still satisfied, as we decrease γ̂S

v and γ̂v by the same

amount. Finally, using γ̂v − γ̂S
v + δ̂Sv = 0 and γ̂v − η ≥ 1, we have

(γ̂S
v)

′ + ŷSv = γ̂S
v − η + ŷSv = γ̂v + δ̂Sv − η + ŷSv ≥ 1 + 0 + 0 = 1.

So again, we find that the solution with γ̂v replaced by γ̂′
v is feasible. Conse-

quently, we can decrease the value of γ̂v. By possibly repeating this argument,
we can decrease γ̂v to 1, so that γ̂v + ŷv = 1.

By similar arguments we can show that the other “without loss of generality”-
assumptions hold as well.

Now we can map an optimal solution for (7.2) to a solution for (7.3) with the
same objective value, as described above. This solution is optimal for (7.3), as
otherwise we could find a better solution, map the better solution back to a
solution for (7.2) with the same objective value, contradicting the optimality
of the starting solution.

Lemma 7.3. An integral optimal solution for (7.3) is also an integral optimal
solution for (2SAG-LP).

Proof. Let γ̂ = (ŷ, ŷS for S ∈ S, δ̂S for S ∈ S, d̂S for S ∈ S) be an integral
optimal solution for (7.3).

Suppose that 1⊤ŷ > ν(G0), then because ŷ is integral, 1⊤ŷ ≥ ν(G0) + 1. Now

replace ŷ by a minimum vertex cover ỹ, that is, 1⊤ỹ = ν(G0), and set δ̃S and

108

7.1. Explicit Distribution

d̃S accordingly for all S ∈ S. We have ỹ ≤ 1 and ŷS ≤ 1, and hence also
δ̃S ≤ 1 and d̃S ≤ 1. Therefore,

ε

(∑
v∈V0

αv ỹv +
∑
S∈S

∑
v∈VS

αS
v ŷ

S
v +

∑
S∈S

∑
v∈V0∩VS

βS
v δ̃

S
v + bSv d̃

S
v

)

≤ ε

(∑
v∈V0

αv +
∑
S∈S

∑
v∈VS

αS
v +

∑
S∈S

∑
v∈V0∩VS

βS
v + bSv

)

≤ ε

(∑
v∈V0

|αv|+
∑
S∈S

∑
v∈VS

|αS
v |+

∑
S∈S

∑
v∈V0∩VS

βS
v + bSv

)

< ε

(
1 +

∑
v∈V0

|αv|+
∑
S∈S

∑
v∈VS

|αS
v |+

∑
S∈S

∑
v∈V0∩VS

βS
v + bSv

)
= 1,

which means we obtain a strictly better solution, contradicting that γ̂ is op-
timal. So, 1⊤ŷ = ν(G0). Similarly, 1⊤ŷS = ν(GS) for all S ∈ S. Hence, γ̂ is
feasible for (2SAG-LP).

Suppose γ̂ is not optimal for (2SAG-LP). Let γ̃ be an optimal solution for
(2SAG-LP). Then∑

v∈V0

αv ỹv +
∑
S∈S

∑
v∈VS

αS
v ỹ

S
v +

∑
S∈S

∑
v∈V0∩VS

βS
v δ̃

S
v + bSv d̃

S
v

<
∑
v∈V0

αv ŷv +
∑
S∈S

∑
v∈VS

αS
v ŷ

S
v +

∑
S∈S

∑
v∈V0∩vS

βS
v δ̂

S
v + bSv d̂

S
v ,

1⊤ỹ = ν(G0) = 1⊤ŷ, and 1⊤ỹS = ν(GS) = 1⊤ŷS for all S ∈ S. It follows that

1⊤ỹ +
∑
S∈S

1⊤ỹS

+ ε

(∑
v∈V0

αv ỹv +
∑
S∈S

∑
v∈VS

αS
v ỹ

S
v +

∑
S∈S

∑
v∈V0∩VS

βS
v δ̃

S
v + bSv d̃

S
v

)
< 1⊤ŷ +

∑
S∈S

1⊤ŷS

+ ε

(∑
v∈V0

αv ŷv +
∑
S∈S

∑
v∈VS

αS
v ŷ

S
v +

∑
S∈S

∑
v∈V0∩VS

βS
v δ̂

S
v + bSv d̂

S
v

)
,

because ε > 0. This contradicts the optimality of γ̂ for (7.3), hence γ̂ must be
optimal for (2SAG-LP).

Finally, Lemmas 7.1 to 7.3 prove Theorem 7.1.

109

Chapter 7. Two-Stage Assignment Games

7.2 Implicit Distribution

We here prove that, when the distribution is not known, the problem becomes
hard but it can still be well approximated using the SAA method. For the SAA
analysis, the integrality result proved in the previous section plays a central
role. In terms of techniques, the results in this section follow closely the ones
in Faenza et al. [20], we still include all the details for the sake of completeness.

7.2.1 Hardness

Theorem 7.2. When the second-stage distribution is specified implicitly by a
sampling oracle, there exists no algorithm that solves (2SAG) in time polyno-
mial in the input size and the number of calls to the oracle, unless P = NP.
This holds even if λ is nonzero for only one vertex v ∈ V0, and if all second-
stage scenarios are obtained by only removing vertices.

Proof. As in Faenza et al. [20], we prove this hardness result by showing that
if such an algorithm were to exist, then it could be used to count the number
of vertex covers in a graph in polynomial time. However, counting the number
of vertex covers in a graph is #P-hard (Provan and Ball [43]).

Let G = (V,E) be any undirected graph. We create an instance of (2SAG) as
follows.

• First-stage instance: The first-stage graph G0 = (V0, E0) is given by

V0 = {v1, . . . , vdv
: v ∈ V } ∪ E ∪ {α, β1, β2} ,

and

E0 = {ev1, . . . , evdv
: v ∈ e ∈ E} ∪ {αe : e ∈ E} ∪ {αβ1, αβ2} .

This is a bipartite graph with bipartitions {v1, . . . , vdv : v ∈ V } ∪ {α}
and E ∪ {β1, β2}.

• Second-stage instance: Sampling from the second-stage distribution D
consists of the following: Add the players {v1, . . . , vdv

} with probability
1
2 , independently for all v ∈ V . Add the players E∪α. The second-stage
graph is the subgraph of G0 induced by these vertices. Observe that this
graph is bipartite, and in particular has the same bipartition as G0.

• Dissatisfaction costs: Set λ = 0 except for λα = 1.

110

7.2. Implicit Distribution

In the first stage, both β1 and β2 only have an edge to α, which means that
at least one of them is exposed. We have ν(G0 \ βi) = ν(G0) for i = 1, 2.
It follows that in any core element, they have value zero. To cover the edges
between β1, β2 and α, it follows that in any core element, α must have value
one. Also observe that in the second stage, α has core value at most one. The
objective (2SAG) in this case becomes

ES∼D

[
min

yS∈core(GS)
1− ySα

]
.

A second-stage vertex set will look like

{v1, . . . , vdv
: v ∈ S} ∪ E ∪ α,

for some S ⊆ V . Denote this set by Π(S). For a given S ⊆ V , the probability
that Π(S) is the second-stage vertex set is 1

2|V | . With this information, we can
write down the expectation explicitly:∑

S⊆V

1

2|V |

[
min

yS∈core(G0[Π(S)])
1− ySα

]
.

Suppose S ⊆ V is a vertex cover of G. Since S is a vertex cover, for each edge
e = uv ∈ E at least one of u and v is in S. Without loss of generality, let us
assume that v ∈ S. Then in G0[Π(S)], the vertex e can be matched to any
copy of v; since we added dv copies of v, there are definitely enough copies to
cover all edge-vertices. This matching is perfect on one side of the bipartition,
which means that it is maximum. Since α is not matched in this matching,
we must have ySα = 0.

Suppose S ⊆ V is not a vertex cover of G. Since S is not a vertex cover, there
exists an edge e = uv ∈ E such that neither u nor v is in S. Consequently, in
G0[Π(S)], the vertex e only has an edge to α. To cover this edge with the core
element, we must have ySe + ySα = 1. Since e is not incident with any other
edges, it is feasible to set ySe = 0 and ySα = 1. This is also the solution that
minimizes 1− ySα .

From these arguments it follows that∑
S⊆V

1

2|V |

[
min

yS∈core(G0[S])
1− ySα

]
(7.4a)

=
1

2|V | (#vertex covers(1− 0) + #not vertex covers(1− 1)), (7.4b)

=
1

2|V |#vertex covers. (7.4c)

111

Chapter 7. Two-Stage Assignment Games

So, if we could solve (2SAG) in polynomial time, that is, determine its optimal
objective value (= (7.4c)), then we could also determine the number of vertex
covers in any graph in polynomial time.

7.2.2 SAA Algorithm

The sample average approximation (SAA) method is a well-known method in
stochastic programming. It has been exploited often to approximate two-stage
stochastic combinatorial problems (see for example [14, 20, 44, 51, 52]). Let
S1, . . . , SN be N independent and identically distributed samples drawn from
the distribution D. We replace the objective function in (2SAG) by the average
taken over our samples S1, . . . , SN :

min
y∈core(G0)

1

N

N∑
i=1

[
min

yi∈core(Gi)

∑
v∈V0∩Vi

λv

[
yv − yiv

]+]
, (SAA)

where we use Gi = (Vi, Ei) to denote GSi = (VSi , ESi) for i = 1, . . . , N .
Observe that (SAA) is an instance of (2SAG-expl), where S =

{
S1, . . . , SN

}
and pS = 1

N for all S ∈ S, which means we can solve this problem by solving
(2SAG-expl), and in particular we can obtain an integral solution.

For any instance I of (2SAG), we denote by yI the optimal solution for in-
stance I, and by valI(y) the objective value of y in instance I.

Theorem 7.3. Given an instance I of (2SAG) where a sampling oracle
specifies the second-stage distribution implicitly, and two parameters ϵ > 0,
α ∈ (0, 1), one can compute a first-stage core element y such that

P(valI(y) ≤ valI(y
I) + ε) ≥ 1− α,

in time polynomial in the size of I, λ, ln(1/α) and 1/ε.

Let ŷ be an extreme point optimal solution for (SAA), which is integral by
Theorem 7.1. As in Faenza et al. [20], the main ingredient to prove Theorem 7.3
is the next lemma.

Lemma 7.4. For any α ∈ (0, 1), the following holds with probability at least
1− α

valI(ŷ) ≤ valI(y
I) +

√
2
∑
v∈V0

λv

√
ln(2|V0|/α)

N
.

The proof of this lemma follows the proof of the corresponding lemma in
Faenza et al. [20] closely. The key difference is that where Faenza et al. [20]

112

7.2. Implicit Distribution

use that the number of stable matchings is bounded, we use the integrality
result of previous section to bound the amount of core solutions we have to
consider. We denote by valSAA(y) the objective value of y in an instance of
(SAA).

Proof of Lemma 7.4. For i ∈ {1, . . . , N} and y ∈ core(G0), let

Gi(y) = min
yi∈core(Gi)

∑
v∈V0∩Vi

λv

[
yv − yiv

]+
.

Let

ε =
√
2
∑
v∈V0

λv

√
ln(2|V0|/α)

N
,

and let Fε =
{
y ∈ core(G0) : valI(y) ≤ valI(yI) + ε

}
. We obtain

P(ŷ /∈ Fε) ≤
∑

y/∈Fε,y∈{0,1}|V0|

P(y is an optimal solution for (SAA))

≤
∑

y/∈Fε,y∈{0,1}|V0|

P
(
valSAA(y) ≤ valSAA(y

I)
)

=
∑

y/∈Fε,y∈{0,1}|V0|

P

(
1

N

N∑
i=1

Gi(y) ≤
1

N

N∑
i=1

Gi(y
I)

)

=
∑

y/∈Fε,y∈{0,1}|V0|

P

(
1

N

N∑
i=1

(
Gi(y)−Gi(y

I)
)
≤ 0

)
.

Observe that we can restrict ourselves to sum over integral y not in Fε, as ŷ
is integral. Fix y /∈ Fε, y ∈ {0, 1}|V0| and let Xi = Gi(y)−Gi(y

I). We bound

the probability P(1
N

∑N
i=1 Xi ≤ 0) using the classical Hoeffding’s inequality,

stated below.

Lemma 7.5 (Hoeffding [29], Faenza et al. [20]). Let X1, . . . , Xn be independent
random variables such that ai ≤ Xi ≤ bi almost surely. Consider the sum of
these random variables Sn = X1 + · · ·+Xn. The Hoeffding’s inequality states
that for all t > 0,

P(E(Sn)− Sn ≥ t) ≤ exp

(−2t2∑n
i=1(bi − ai)2

)
.

It follows from 0 ≤ y ≤ 1 that 0 ≤ [yv − yi]+ ≤ 1, and consequently that

0 ≤ Gi(y) ≤
∑

v∈V0∩Vi

λv ≤
∑
v∈V0

λv.

113

Chapter 7. Two-Stage Assignment Games

Let ai = −∑v∈V0
λv and bi =

∑
v∈V0

λv. Then ai ≤ Xi ≤ bi. Now since

y /∈ Fε, it holds that E(Xi) ≥ ε. Let SN =
∑N

i=1 Xi. We obtain

P

(
1

N

N∑
i=1

Xi ≤ 0

)
= P

(
1

N
SN ≤ 0

)
= P (SN ≤ 0)

= P (E(SN)− SN ≥ E(SN))

≤ P (E(SN)− SN ≥ εN)

≤ exp

(
−2ε2N2∑N

i=1(bi − ai)2

)

= exp

(
−22

(∑
v∈V0

λv

)2
ln(2|V0|/α)N

N(2
∑

v∈V0
λv)2

)
= exp

(
− ln(2|V0|/α)

)
=

α

2|V0| .

So finally,

P(ŷ /∈ Fε) ≤
∑

y/∈Fε,y∈{0,1}|V0|

P

(
1

N

N∑
i=1

Xi ≤ 0

)
≤

∑
y/∈Fε,y∈{0,1}|V0|

α

2|V0| ≤ α,

where the last inequality follows from the fact that since y ∈ {0, 1}|V0|, there
are at most 2|V0| terms in the sum.

Finally, for any ε > 0 and α ∈ (0, 1), setting N = 2
(∑

v∈V0
λv

)2
ln(2|V0|/α)/ε2

proves Theorem 7.3.

7.3 Multistage Setting

In this section we consider a multistage setting where there are k stages, with
predetermined graphs (no distribution). We denote by Gi = (Vi, Ei) the graph
of the i’th stage for i = 1, . . . , k. This setting resembles the setting in Fluschnik
et al. [23], who discuss multistage vertex cover. As before, and as in Fluschnik
et al. [23], we consider the problem of minimizing the absolute difference.
Again, one can still choose later to minimize the positive difference by choosing
which variables to take into the objective. We can formulate this problem as
follows.

min
yi∈core(Gi),i=1,...,k

k−1∑
i=1

∑
v∈Vi∩Vi+1

λi
v

∣∣yiv − yi+1
v

∣∣ . (7.5)

114

7.3. Multistage Setting

Like before, we can formulate this as the following LP.

min

k−1∑
i=1

∑
v∈Vi∩Vi+1

λi
v

(
δiv + div

)
s.t. yiu + yiv ≥ 1 ∀uv ∈ Ei,∀i = 1, . . . , k

1⊤yi = ν(Gi) ∀i = 1, . . . , k

yi ∈ RVi

≥0 ∀i = 1, . . . , k

yiv − yi+1
v ≤ δiv ∀v ∈ Vi ∩ Vi+1,∀i = 1, . . . , k − 1

yi+1
v − yiv ≤ div ∀v ∈ Vi ∩ Vi+1,∀i = 1, . . . , k − 1

δi ∈ RVi∩Vi+1

≥0 ∀i = 1, . . . , k − 1

di ∈ RVi∩Vi+1

≥0 ∀i = 1, . . . , k − 1

(7.6)

Let V = ∪ki=1Vi. This LP has O(|V |k) variables and O(|V |2k) constraints.
So it has size polynomial in the input size, which means we can solve (7.5) in
polynomial time, by solving (7.6). Like in Section 7.1, we can show that the
feasible region of (7.6) is an integral polyhedron.

Theorem 7.4. The feasible region of (7.6) is an integral polyhedron.

Before we go into the proof, we discuss a consequence of this theorem. In
particular, we can use this theorem to prove a result about the multistage
vertex cover problem, which we now define formally. A vertex cover C in a
graph G = (V,E) is a subset of vertices C ⊆ V such for each edge uv ∈ E, we
have {u, v}∩C ̸= ∅. In the multistage vertex cover problem there are k stages
with predetermined graphs G1, . . . , Gk. The goal is to find a vertex cover for
each stage C1, . . . , Ck such that the total absolute difference between stages is
minimized, that is,

k−1∑
i=1

|Ci \ Ci+1|+ |Ci+1 \ Ci|.

Fluschnik et al. [23] have shown that the multistage vertex cover problem is
NP-hard, already when k = 2, the first-stage graph is a path and the second-
stage graph is a tree. Both graphs are indeed very simple bipartite graphs.
Our result shows that the difficulty lies in the fact that the bipartitions for
the two stages are different. In fact, with the additional requirement that the
bipartitions are the same, we prove that the problem becomes polynomial-time
solvable for any number of stages.

Theorem 7.5. The multistage vertex cover problem is solvable in polynomial
time when all Gi, i = 1, . . . , k, are bipartite with the same bipartition.

115

Chapter 7. Two-Stage Assignment Games

Proof. We can solve the multistage vertex cover problem on Gi, i = 1, . . . , k
by modeling it as a multistage assignment game with the LP in (7.6). There,
we set λi

v = 1 for all i = 1, . . . , k − 1 and all v ∈ Vi ∩ Vi+1. By Theorem 7.4
we can obtain an integral optimal solution, which means that the vectors yi

in this solution indicate vertex covers Ci.

Now we go into the proof of Theorem 7.4, following the same line of argument
as in the proof of Theorem 7.1.

We consider (7.6) with an arbitrary objective, and show that for each objective
we can find an integral optimal solution. Since for each extreme point of a
polyhedron there is an objective such that the extreme point is the unique
optimal solution, this proves that the polyhedron is integral. We consider the
following objective, where α can take any value, β ≥ 0 and b ≥ 0. Note that if
βi
v < 0 or biv < 0 for any v ∈ Vi ∩ Vi+1, i = 1, . . . , k − 1, then the LP becomes

unbounded, and so there are no extreme points in those directions.

min

k∑
i=1

∑
v∈Vi

αi
vyv +

k−1∑
i=1

∑
v∈Vi∩Vi+1

βi
vδ

i
v + bivd

i
v

We will formulate a maximum flow problem on an auxiliary graph, and com-
pute its dual LP. It is known that the constraint matrix of a maximum flow
LP is totally unimodular (TU). The dual LP has the transpose as constraint
matrix, which is then also TU. Since in addition the right hand side of the
dual constraints are integral, this means the feasible region of the dual is an
integral polyhedron. (See for example Schrijver [47] for properties of TU ma-
trices.) Finally, we show that we can map an optimal dual solution to an
optimal solution for (7.6).

Let Vs, Vt ⊆ ∪ki=1Vi be the bipartition of ∪ki=1Gi. Let

ε =
1

1 +
∑

v∈Vi
|αi

v|+
∑k−1

i=1

∑
v∈Vi∩Vi+1

βi
v + biv

.

Note that ε > 0. We create the auxiliary graph G′ = (V ′, A) as follows.
Let V ′ = ∪ki=1Vi ∪ {s, t}. To make clear about which version of a vertex
v ∈ Vi∩Vi+1 we are talking, we (sometimes) denote them by vi and vi+1. The
arc set A contains the following arcs:

• sv for all v ∈ Vi ∩ Vs and i = 1, . . . , k, with flow-capacity 1 + εαi
v;

• vt for all v ∈ Vi ∩ Vt and i = 1, . . . , k, with flow-capacity 1 + εαi
v;

• vi+1vi for all v ∈ (Vi ∩ Vi+1) ∩ Vs, i = 1, . . . , k − 1, with flow-capacity
εβi

v;

116

7.3. Multistage Setting

• vivi+1 for all v ∈ (Vi ∩ Vi+1) ∩ Vs, i = 1, . . . , k − 1, with flow-capacity
εbiv;

• vivi+1 for all v ∈ (Vi ∩ Vi+1) ∩ Vt, i = 1, . . . , k − 1, with flow-capacity
εβi

v;

• vi+1vi for all v ∈ (Vi ∩ Vi+1) ∩ Vt, i = 1, . . . , k − 1, with flow-capacity
εbiv;

• uv for all uv ∈ ⋃k
i=1 Ei, such that u ∈ Vs, v ∈ Vt, without upperbound

on the flow-capacity.

We formulate the maximum flow problem in G′ as an LP as follows.

max
∑
v∈Vs

fsv

s.t. fsv + 1[v ∈ Vi−1](fvi−1v − fvvi−1) + 1[v ∈ Vi+1](fvi+1v − fvvi+1)

−
∑

u:uv∈Ei

fvu = 0 ∀v ∈ Vi ∩ Vs,∀i = 1, . . . , k

∑
u:uv∈Ei

fuv + 1[v ∈ Vi−1](fvi−1v − fvvi−1) + 1[v ∈ Vi+1](fvi+1v

− fvvi+1)− fvt = 0 ∀v ∈ Vi ∩ Vt,∀i = 1, . . . , k

fsv ≤ 1 + εαi
v ∀v ∈ Vi ∩ Vs,∀i = 1, . . . , k

fvt ≤ 1 + εαi
v ∀v ∈ Vi ∩ Vt,∀i = 1, . . . , k

fvi+1vi ≤ εβi
v ∀v ∈ (Vi ∩ Vi+1) ∩ Vs,∀i = 1, . . . , k − 1

fvivi+1 ≤ εbiv ∀v ∈ (Vi ∩ Vi+1) ∩ Vs,∀i = 1, . . . , k − 1

fvivi+1 ≤ εβi
v ∀v ∈ (Vi ∩ Vi+1) ∩ Vt,∀i = 1, . . . , k − 1

fvi+1vi ≤ εbiv ∀v ∈ (Vi ∩ Vi+1) ∩ Vt,∀i = 1, . . . , k − 1

f ∈ RA
≥0

(7.7)

For this LP to have a feasible flow, the flow-capacities need to be nonnegative:
1 + εαi

v ≥ 0 for all v ∈ Vi, i = 1, . . . , k, εβi
v ≥ 0 for all v ∈ Vi ∩ Vi+1,

i = 1, . . . , k − 1, and εbiv ≥ 0 for all v ∈ Vi ∩ Vi+1, i = 1, . . . , k − 1. The later
two are satisfied as ε > 0 and we set β, b ≥ 0. For any v ∈ Vi, i = 1, . . . , k, we
have

αi
v ≥ −|αi

v| ≥ −

1 +
∑
v∈Vi

|αi
v|+

k−1∑
i=1

∑
v∈Vi∩Vi+1

βi
v + biv

 = −1

ε
,

and so, since ε > 0, we have 1 + εαi
v ≥ 1 + ε−1

ε = 0.

117

Chapter 7. Two-Stage Assignment Games

The dual of the flow LP in Equation (7.7) is as follows.

min

k∑
i=1

∑
v∈Vi

yiv + ε

 k∑
i=1

∑
v∈Vi

αi
vy

i
v +

k−1∑
i=1

∑
v∈Vi∩Vi+1

βi
vδ

i
v + bivd

i
v


s.t. γi

v + yiv ≥ 1 ∀v ∈ Vi ∩ Vs,∀i = 1, . . . , k

γi
v − γi+1

v + δiv ≥ 0 ∀v ∈ (Vi ∩ Vi+1) ∩ Vs,∀i = 1, . . . , k − 1

γi+1
v − γi

v + div ≥ 0 ∀v ∈ (Vi ∩ Vi+1) ∩ Vs,∀i = 1, . . . , k − 1

γi
v − γi

u ≥ 0 ∀uv ∈ Ei such that u ∈ Vs, v ∈ Vt,∀i = 1, . . . , k

− γi
v + yiv ≥ 0 ∀v ∈ Vi ∩ Vt,∀i = 1, . . . , k

γi+1
v − γi

v + δiv ≥ 0 ∀v ∈ (Vi ∩ Vi+1) ∩ Vt,∀i = 1, . . . , k − 1

γi
v − γi+1

v + div ≥ 0 ∀v ∈ (Vi ∩ Vi+1) ∩ Vt,∀i = 1, . . . , k − 1

yi ∈ RVi

≥0 ∀i = 1, . . . , k

δi ∈ RVi∩Vi+1

≥0 ∀i = 1, . . . , k − 1

di ∈ RVi∩Vi+1

≥0 ∀i = 1, . . . , k − 1

γi ∈ RVi ∀i = 1, . . . , k

(7.8)

Lemma 7.6. The feasible region of (7.8) is an integral polyhedron.

Proof. The constraint matrix of a maximum flow LP is TU; in particular the
constraint matrix of (7.7) is TU.

The transpose of a TU matrix is TU. The constraint matrix of a dual LP is
the transpose of the constraint matrix of the primal. Together they imply that
the constraint matrix of (7.8) is TU.

Finally, a polyhedron with a TU constraint matrix and integral right hand
side is an integral polyhedron; in particular, the feasible region of (7.8) is an
integral polyhedron.

We map an integral optimal solution for (7.8) to an integral optimal solution
for (7.6) in two steps. First we map it to the LP in Equation (7.9).

Lemma 7.7. We can obtain an optimal solution for (7.9) from an optimal
solution for (7.8).

Proof.

Claim 7.3. Any feasible solution for (7.9) can be mapped to a feasible solution
for (7.8) with the same objective value.

118

7.3. Multistage Setting

min

k∑
i=1

1⊤yi + ε

 k∑
i=1

∑
v∈Vi

αi
vy

i
v +

k−1∑
i=1

∑
v∈Vi∩Vi+1

βi
vδ

i
v + bivd

i
v


s.t. yiu + yiv ≥ 1 ∀uv ∈ Ei,∀i = 1, . . . , k

yi ∈ RVi

≥0 ∀i = 1, . . . , k

yiv − yi+1
v ≤ δiv ∀v ∈ Vi ∩ Vi+1,∀i = 1, . . . , k − 1

yi+1
v − yiv ≤ div ∀v ∈ Vi ∩ Vi+1,∀i = 1, . . . , k − 1

δi ∈ RVi∩Vi+1

≥0 ∀i = 1, . . . , k − 1

di ∈ RVi∩Vi+1

≥0 ∀i = 1, . . . , k − 1

(7.9)

Proof. Let µ̂ = (ŷi for i = 1, . . . , k, δ̂i for i = 1, . . . , k − 1, d̂i for i = 1, . . . , k −
1) be a feasible solution for (7.9). We extend it to a solution µ̂ext for (7.8)
by setting γ̂i

v = 1 − ŷiv for all v ∈ Vi ∩ Vs, i = 1, . . . , k, and γ̂i
v = ŷiv for all

v ∈ Vi ∩ Vt, i = 1, . . . , k. It is clear that µ̂ext has the same objective value as
µ̂, as the objective functions of the two linear programs are the same and do
not involve the γ variables. We next show that µ̂ext is feasible.

The constraints γi
v + yiv ≥ 1 and −γi

v + yiv ≥ 0 of (7.8) are satisfied by µ̂ext

by definition. Nonnegativity of yi for i = 1, . . . , k, and of δi and di for i =
1, . . . , k − 1 are satisfied by µ̂ext, because µ̂ is feasible for (7.9).

Let i = 1, . . . , k − 1 and v ∈ (Vi ∩ Vi+1) ∩ Vs. We have

γ̂i
v − γ̂i+1

v + δ̂iv = 1− ŷiv − (1− ŷi+1
v) + δ̂iv = ŷi+1

v − ŷiv + δ̂iv ≥ 0,

and

γ̂i+1
v − γ̂i

v + d̂iv = 1− ŷi+1
v − (1− ŷiv) + d̂iv = ŷiv − ŷi+1

v + d̂iv ≥ 0,

where both times the last inequality follows from µ̂’s feasibility for (7.9). Sim-
ilarly, we have for i = 1, . . . , k − 1 and v ∈ (Vi ∩ Vi+1) ∩ Vt

γ̂i+1
v − γ̂i

v + δ̂iv = ŷi+1
v − ŷiv + δ̂iv ≥ 0,

and
γ̂i
v − γ̂i+1

v + d̂iv = ŷiv − ŷi+1
v + d̂iv ≥ 0.

Finally, let i = 1, . . . , k and uv ∈ Ei such that u ∈ Vs and v ∈ Vt. We have

γ̂i
v − γ̂i

u = ŷiv − (1− ŷiu) = ŷiv + ŷiu − 1 ≥ 0.

119

Chapter 7. Two-Stage Assignment Games

Claim 7.4. Any feasible solution to (7.8) can be mapped to a feasible solution
to (7.9) with the same objective value.

Proof. Let µ̂ = (ŷi for i = 1, . . . , k, δ̂i for i = 1, . . . , k − 1, d̂i for i = 1, . . . , k −
1, γ̂i for i = 1, . . . , k) be a feasible solution for (7.8). We restrict it to a solution
µ̂res for (7.9) by disregarding the γ variables. It is clear that µ̂res has the same
objective value as µ̂, as the objective functions of the two linear programs are
the same and do not involve the γ variables. We next show that µ̂res is feasible.

First observe that µ̂res ≥ 0.

Let i = 1, . . . , k and uv ∈ Ei such that u ∈ Vs and v ∈ Vt. We have

ŷiu + ŷiv = (γ̂i
u + ŷiu) + (γ̂i

v − γ̂i
u) + (−γ̂i

v + ŷiv) ≥ 1 + 0 + 0 = 1.

Let i = 1, . . . , k, v ∈ (Vi ∩ Vi+1) ∩ Vs. We will show that without loss of
generality we can assume that γ̂j

u + ŷju = 1 for u ∈ Vj ∩ VS , j = 1, . . . , k, so in
particular for u = v and j = i, j = i+ 1. Consequently, we have

δ̂iv + ŷi+1
v − ŷiv = δ̂iv + ŷi+1

v − ŷiv + γ̂i+1
v − γ̂i+1

v + γ̂i
v − γ̂i

v

= (δ̂iv + γ̂i
v − γ̂i+1

v) + (γ̂i+1
v + ŷi+1

v)− (γ̂i
v + ŷiv)

≥ 0 + 1− 1 = 0,

and

d̂iv + ŷiv − ŷi+1
v = d̂iv + ŷiv − ŷi+1

v + γ̂i
v − γ̂i

v + γ̂i+1
v − γ̂i+1

v

= (d̂iv + γ̂i+1
v − γ̂i

v) + (γ̂i
v + ŷiv)− (γ̂i+1

v + ŷi+1
v)

≥ 0 + 1− 1 = 0.

Now, let i = 1, . . . , k, v ∈ (Vi ∩Vi+1)∩Vt. We will also show that without loss
of generality we can assume that −γ̂j

u + ŷju = 0 for u ∈ Vj ∩ Vt, j = 1, . . . , k.
Consequently, we have

δ̂iv + ŷi+1
v − ŷiv = δ̂iv + ŷi+1

v − ŷiv + γ̂i+1
v − γ̂i+1

v + γ̂i
v − γ̂i

v

= (δ̂iv + γ̂i+1
v − γ̂i

v) + (−γ̂i+1
v + ŷi+1

v)− (−γ̂i
v + ŷiv)

≥ 0 + 0− 0 = 0,

and

d̂iv + ŷiv − ŷi+1
v = d̂iv + ŷiv − ŷi+1

v + γ̂i
v − γ̂i

v + γ̂i+1
v − γ̂i+1

v

= (d̂iv + γ̂i
v − γ̂i+1

v) + (−γ̂i
v + ŷiv)− (−γ̂i+1

v + ŷi+1
v)

≥ 0 + 0− 0 = 0,

This finishes the feasibility proof of µ̂res.

120

7.3. Multistage Setting

To show that we can indeed assume without loss of generality that γ̂i
v+ ŷiv = 1

for i = 1, . . . , k, v ∈ Vi ∩ Vs, suppose it does not hold, so: γ̂i
v + ŷiv > 1 for

some i ∈ {1, . . . , k} and v ∈ Vi ∩ Vs. In particular, let γ̂i
v + ŷiv > 1 for all i in

a range, that is, for all i ∈ {j, . . . , j + l} for some j ∈ {1, . . . , k} and integral
l ≥ 0, such that either v /∈ Vj−1 or γ̂j−1

v + ŷj−1
v = 1, likewise for j + l + 1.

If ŷiv > 0 for some i ∈ {j, . . . , j + l}, then lower ŷiv by min{ŷiv, 1 − γ̂i
v} (this

does not affect feasibility as ŷiv is contained in only this one constraint, and it
improves the objective). If now γ̂i

v + ŷiv = 1, then we continue with a smaller
range, otherwise we continue with the same range. So, we can assume that for
all i ∈ {j, . . . , j + l}, we have ŷiv = 0 and γ̂i

v > 1. Let η > 0 be small enough
such that if we set (γ̂i

v)
′ = γ̂i

v − η (this does not change the objective) for all
i ∈ {j, . . . , j + l}, we still have (γ̂i

v)
′ ≥ 1.

For i ∈ {j, . . . , j + l} and u ∈ Vt such that uv ∈ Ei, we have

γ̂i
u − (γ̂i

v)
′ = γ̂i

u − (γ̂i
v − η) = γ̂i

u − γ̂i
v + η ≥ η > 0.

For i ∈ {j, . . . , j + l − 1}, we have

(γ̂i
v)

′ − (γ̂i+1
v)′ + δ̂iv = (γ̂i

v − η)− (γ̂i+1
v − η) + δ̂iv = γ̂i

v − γ̂i+1
v + δ̂iv ≥ 0,

and

(γ̂i+1
v)′ − (γ̂i

v)
′ + d̂iv = (γ̂i+1

v − η)− (γ̂i
v − η) + d̂iv = γ̂i+1

v − γ̂i
v + d̂iv ≥ 0.

If v ∈ Vi−1, then γ̂i−1
v + ŷi−1

v = 1, and so

γ̂i−1
v − (γ̂i

v)
′ + δ̂i−1

v = γ̂i−1
v − (γ̂i

v − η) + δ̂i−1
v = γ̂i−1

v − γ̂i
v + δ̂i−1

v + η ≥ η > 0,

and

(γ̂i
v)

′ − γ̂i−1
v + δ̂i−1

v = (γ̂i
v − η)− (1− ŷi−1

v) + δ̂i−1
v

= (γ̂i
v − η − 1) + ŷi−1

v + δ̂i−1
v ≥ 0 + 0 + 0 = 0.

If v ∈ Vj+l+1, then γ̂j+l+1
v + ŷj+l+1

v = 1, and so

(γ̂j+l
v)′ − γ̂j+l+1

v + δ̂j+l
v = (γ̂j+l

v − η)− (1− ŷj+l+1
v) + δ̂j+l

v

= (γ̂j+l
v − η − 1) + ŷj+l+1

v + δ̂j+l
v ≥ 0 + 0 + 0 = 0,

and

γ̂j+l+1
v − (γ̂j+l

v)′ + δ̂j+l
v = γ̂j+l+1

v − (γ̂j+l
v − η) + δ̂j+l

v

= γ̂j+l+1
v − γ̂j+l

v + δ̂j+l
v + η ≥ η > 0.

So we find that the solution with γ̂i
v replaced by (γ̂i

v)
′ for all i ∈ {j, . . . , j + l}

is feasible. By possibly repeating this argument, we can decrease all γ̂i
v to 1,

such that γ̂i
v + ŷiv = 1 holds for all i ∈ {1, . . . , k} and v ∈ Vi ∩ Vs.

121

Chapter 7. Two-Stage Assignment Games

By similar arguments we can show that we can also assume without loss of
generality that −γ̂i

v + ŷiv = 0 for i = 1, . . . , k, v ∈ Vi ∩ Vt.

Now we can map an optimal solution for (7.8) to a solution for (7.9) with the
same objective value, as described above. This solution is optimal for (7.9), as
otherwise we could find a better solution, map the better solution back to a
solution for (7.8) with the same objective value, contradicting the optimality
of the starting solution.

Lemma 7.8. An integral optimal solution for (7.9) is also an integral optimal
solution for (7.6).

Proof. Let γ̂ = (ŷi for i = 1, . . . , k, δ̂i for i = 1, . . . , k − 1, d̂i for i = 1, . . . , k −
1) be an integral optimal solution for (7.9).

Suppose that 1⊤ŷi > ν(Gi) for some i = 1, . . . , k, then because ŷi is integral,
1⊤ŷi ≥ ν(G) + 1. Now replace ŷi by a minimum vertex cover ỹi, that is,

1⊤ỹi = ν(Gi), and set δ̃i and d̃i accordingly. We have ỹi ≤ 1 and ŷi+1 ≤ 1,

and hence also δ̃i ≤ 1 and d̃i ≤ 1 (this also holds for superscripts other than
i). Therefore,

ε

(
k∑

i=1

∑
v∈Vi

αi
v ŷ

i
v+

k−1∑
i=1

∑
v∈Vi∩Vi+1

βi
v δ̃

i
v + bivd̃

i
v


≤ ε

 k∑
i=1

∑
v∈Vi

αi
v +

k−1∑
i=1

∑
v∈Vi∩Vi+1

βi
v + biv


≤ ε

 k∑
i=1

∑
v∈Vi

|αi
v|+

k−1∑
i=1

∑
v∈Vi∩Vi+1

βi
v + biv


< ε

1 +
k∑

i=1

∑
v∈Vi

|αi
v|+

k−1∑
i=1

∑
v∈Vi∩Vi+1

βi
v + biv


= 1,

which means we obtain a strictly better solution, contradicting that γ̂ is opti-
mal. So, 1⊤ŷi = ν(Gi). Hence, γ̂ is feasible for (7.6).

Suppose γ̂ is not optimal for (7.6). Let γ̃ be an optimal solution for (7.6).

122

7.3. Multistage Setting

Then

k∑
k=1

∑
v∈Vi

αi
v ỹ

i
v +

k−1∑
i=1

∑
v∈Vi∩Vi+1

βi
v δ̃

i
v + bivd̃

i
v

<

k∑
k=1

∑
v∈Vi

αi
v ŷ

i
v +

k−1∑
i=1

∑
v∈Vi∩Vi+1

βi
v δ̂

i
v + bivd̂

i
v

and 1⊤ỹi = ν(Gi) = 1⊤ŷi for all i = 1, . . . , k. It follows that

k∑
i=1

1⊤ỹi + ε

 k∑
k=1

∑
v∈Vi

αi
v ỹ

i
v +

k−1∑
i=1

∑
v∈Vi∩Vi+1

βi
v δ̃

i
v + bivd̃

i
v


<

k∑
i=1

1⊤ŷi + ε

 k∑
k=1

∑
v∈Vi

αi
v ŷ

i
v +

k−1∑
i=1

∑
v∈Vi∩Vi+1

βi
v δ̂

i
v + bivd̂

i
v

 ,

because ε > 0. This contradicts the optimality of γ̂ for (7.9), hence γ̂ must be
optimal for (7.6).

Finally, Lemmas 7.6 to 7.8 prove Theorem 7.4.

123

Bibliography

[1] Sara Ahmadian, Hamideh Hosseinzadeh and Laura Sanità. 2018. Stabi-
lizing network bargaining games by blocking players. In: Mathematical
Programming. Volume: 172. Number: 1. Pages: 249–275. doi: 10.1007/
s10107-017-1177-9.

[2] Paola Alimonti and Viggo Kann. 2000. Some APX-completeness results
for cubic graphs. In: Theoretical Computer Science. Volume: 237. Num-
ber: 1. Pages: 123–134. doi: 10.1016/S0304-3975(98)00158-3.

[3] Gautam Appa and Balázs Kotnyek. 2006. A bidirected generalization of
network matrices. In: Networks. Volume: 47. Number: 4. Pages: 185–
198. doi: 10.1002/net.20108.

[4] Evripidis Bampis, Bruno Escoffier, Kevin Schewior and Alexandre
Teiller. 2021. Online multistage subset maximization problems. In: Al-
gorithmica. Volume: 83. Number: 8. Pages: 2374–2399. doi: 10.1007/
s00453-021-00834-7.

[5] Evripidis Bampis, Bruno Escoffier and Paul Youssef. 2023. Online 2-
stage stable matching. In: Discrete Applied Mathematics. Volume: 341.
Pages: 394–405. doi: 10.1016/j.dam.2023.09.009.

[6] Francisco Barahona. 1993. Reducing matching to polynomial size linear
programming. In: SIAM Journal on Optimization. Volume: 3. Number:
4. Pages: 688–695. doi: 10.1137/0803035.

[7] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Nicole Im-
morlica and Hamid Mahini. 2010. The cooperative game theory founda-
tions of network bargaining bames. In: Automata, Languages and Pro-
gramming. Pages: 67–78. doi: 10.1007/978-3-642-14165-2_7.

[8] Péter Biró, Matthijs Bomhoff, Petr A. Golovach, Walter Kern and
Daniël Paulusma. 2014. Solutions for the stable roommates problem with
payments. In: Theoretical Computer Science. Volume: 540-541. Pages:
53–61. doi: 10.1016/j.tcs.2013.03.027. Combinatorial Optimiza-
tion: Theory of algorithms and Complexity.

125

https://doi.org/10.1007/s10107-017-1177-9
https://doi.org/10.1007/s10107-017-1177-9
https://doi.org/10.1016/S0304-3975(98)00158-3
https://doi.org/10.1002/net.20108
https://doi.org/10.1007/s00453-021-00834-7
https://doi.org/10.1007/s00453-021-00834-7
https://doi.org/10.1016/j.dam.2023.09.009
https://doi.org/10.1137/0803035
https://doi.org/10.1007/978-3-642-14165-2_7
https://doi.org/10.1016/j.tcs.2013.03.027

Bibliography

[9] Péter Biró, Walter Kern and Daniël Paulusma. 2010. On Solution Con-
cepts for Matching Games. In: Theory and Applications of Models of
Computation. Pages: 117–127. doi: 10.1007/978-3-642-13562-0_12.

[10] Péter Biró, Walter Kern, Daniël Paulusma and Péter Wojuteczky. 2018.
The stable fixtures problem with payments. In: Games and Economic
Behavior. Volume: 108. Pages: 245–268. doi: 10.1016/j.geb.2017.
02.002. Special Issue in Honor of Lloyd Shapley: Seven Topics in Game
Theory.

[11] Adrian Bock, Karthekeyan Chandrasekaran, Jochen Könemann, Britta
Peis and Laura Sanità. 2015. Finding small stabilizers for unstable
graphs. In: Mathematical Programming. Volume: 154. Number: 1. Pages:
173–196. doi: 10.1007/s10107-014-0854-1.

[12] Karthekeyan Chandrasekaran. 2017. Graph Stabilization: A Survey. In:
Combinatorial Optimization and Graph Algorithms: Communications
of NII Shonan Meetings. Pages: 21–41. doi: 10.1007/978-981-10-
6147-9_2.

[13] Karthekeyan Chandrasekaran, Corinna Gottschalk, Jochen Könemann,
Britta Peis, Daniel Schmand and Andreas Wierz. 2019. Additive stabi-
lizers for unstable graphs. In: Discrete Optimization. Volume: 31. Pages:
56–78. doi: 10.1016/j.disopt.2018.08.003.

[14] Moses Charikar, Chandra Chekuri and Martin Pál. 2005. Sampling
bounds for stochastic optimization. In: Approximation, Randomization
and Combinatorial Optimization. Algorithms and Techniques. Pages:
257–269. doi: 10.1007/11538462_22.

[15] George B. Dantzig, W.O. Blattner and M.R. Rao. 1966. Finding a cycle
in a graph with minimum cost to time ratio with application to a ship
routing problem. Technical report number 66-1. Stanford University, De-
partment of Operations Research. url: https://apps.dtic.mil/sti/
pdfs/AD0646553.pdf.

[16] Jesús A. De Loera, Sean Kafer and Laura Sanità. 2022. Pivot rules
for circuit-augmentation algorithms in linear optimization. In: SIAM
Journal on Optimization. Volume: 32. Number: 3. Pages: 2156–2179.
doi: 10.1137/21M1419994.

[17] Xiaotie Deng, Toshihide Ibaraki and Hiroshi Nagamochi. 1999. Algorith-
mic aspects of the core of combinatorial optimization games. In: Mathe-
matics of Operations Research. Volume: 24. Number: 3. Pages: 751–766.
doi: 10.1287/moor.24.3.751.

[18] Szymon Dudycz and Katarzyna Paluch. 2018. Optimal general match-
ings. In: Graph-Theoretic Concepts in Computer Science. Pages: 176–
189. doi: 10.1007/978-3-030-00256-5_15.

126

https://doi.org/10.1007/978-3-642-13562-0_12
https://doi.org/10.1016/j.geb.2017.02.002
https://doi.org/10.1016/j.geb.2017.02.002
https://doi.org/10.1007/s10107-014-0854-1
https://doi.org/10.1007/978-981-10-6147-9_2
https://doi.org/10.1007/978-981-10-6147-9_2
https://doi.org/10.1016/j.disopt.2018.08.003
https://doi.org/10.1007/11538462_22
https://apps.dtic.mil/sti/pdfs/AD0646553.pdf
https://apps.dtic.mil/sti/pdfs/AD0646553.pdf
https://doi.org/10.1137/21M1419994
https://doi.org/10.1287/moor.24.3.751
https://doi.org/10.1007/978-3-030-00256-5_15

Bibliography

[19] H.A. Eiselt and Carl-Louis Sandblom. 2000. Shortest path problems. In:
Integer Programming and Network Models. Pages: 283–313. doi: 10.
1007/978-3-662-04197-0_13.

[20] Yuri Faenza, Ayoub Foussoul and Chengyue He. 2024. Two-stage
stochastic stable matching. In: Integer Programming and Combinatorial
Optimization. Pages: 154–167. doi: 10.1007/978-3-031-59835-7_12.

[21] Linda Farczadi, Konstantinos Georgiou and Jochen Könemann. 2013.
Network bargaining with general capacities. In: Algorithms – ESA 2013.
Pages: 433–444. doi: 10.1007/978-3-642-40450-4_37.

[22] Elisabeth Finhold. 2014. Circuit diameters and their application to
transportation problems. PhD thesis. Technische Universität München.
url: https://mediatum.ub.tum.de/doc/1233751.

[23] Till Fluschnik, Rolf Niedermeier, Valentin Rohm and Philipp Zschoche.
2022. Multistage vertex cover. In: Theory of Computing Systems. Vol-
ume: 66. Number: 2. Pages: 454–483. doi: 10 . 1007 / s00224 - 022 -
10069-w.

[24] Lester R. Ford and Delbert R. Fulkerson. 1962. Flows in networks.

[25] Martin Grötschel, László Lovász and Alexander Schrijver. 1993. Geo-
metric algorithms and combinatorial optimization. doi: 10.1007/978-
3-642-78240-4.

[26] Martin Grötschel, László Lovász and Alexander Schrijver. 1981. The
ellipsoid method and its consequences in combinatorial optimization. In:
Combinatorica. Volume: 1. Number: 2. Pages: 169–197. doi: 10.1007/
BF02579273.

[27] Anupam Gupta, Kunal Talwar and Udi Wieder. 2014. Changing bases:
multistage optimization for matroids and matchings. In: Automata, Lan-
guages, and Programming. Pages: 563–575. doi: 10.1007/978-3-662-
43948-7_47.

[28] Magnús M. Halldórsson. 1993. Approximating the minimum maximal
independence number. In: Information Processing Letters. Volume: 46.
Number: 4. Pages: 169–172. doi: 10.1016/0020-0190(93)90022-2.

[29] Wassily Hoeffding. 1994. Probability inequalities for sums of bounded
random variables. In: The Collected Works of Wassily Hoeffding. Pages:
409–426. doi: 10.1007/978-1-4612-0865-5_26.

[30] Takehiro Ito, Naonori Kakimura, Naoyuki Kamiyama, Yusuke
Kobayashi and Yoshio Okamoto. 2017. Efficient stabilization of cooper-
ative matching games. In: Theoretical Computer Science. Volume: 677.
Pages: 69–82. doi: 10.1016/j.tcs.2017.03.020.

127

https://doi.org/10.1007/978-3-662-04197-0_13
https://doi.org/10.1007/978-3-662-04197-0_13
https://doi.org/10.1007/978-3-031-59835-7_12
https://doi.org/10.1007/978-3-642-40450-4_37
https://mediatum.ub.tum.de/doc/1233751
https://doi.org/10.1007/s00224-022-10069-w
https://doi.org/10.1007/s00224-022-10069-w
https://doi.org/10.1007/978-3-642-78240-4
https://doi.org/10.1007/978-3-642-78240-4
https://doi.org/10.1007/BF02579273
https://doi.org/10.1007/BF02579273
https://doi.org/10.1007/978-3-662-43948-7_47
https://doi.org/10.1007/978-3-662-43948-7_47
https://doi.org/10.1016/0020-0190(93)90022-2
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1016/j.tcs.2017.03.020

Bibliography

[31] Sean Kafer. 2022. Polyhedral diameters and applications to optimization.
PhD thesis. University of Waterloo. url: http://hdl.handle.net/
10012/18705.

[32] L.G. Khachiyan. 1980. Polynomial algorithms in linear programming. In:
USSR Computational Mathematics and Mathematical Physics. Volume:
20. Number: 1. Pages: 53–72. doi: 10.1016/0041-5553(80)90061-0.

[33] Subhash Khot. 2002.On the power of unique 2-prover 1-round games. In:
Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory
of Computing. Pages: 767–775. doi: 10.1145/509907.510017.

[34] Jon Kleinberg and Éva Tardos. 2008. Balanced outcomes in social ex-
change networks. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of Computing. Pages: 295–304. doi: 10.1145/1374376.
1376994.

[35] Anton J. Kleywegt, Alexander Shapiro and Tito Homem-de-Mello. 2002.
The sample average approximation method for stochastic discrete opti-
mization. In: SIAM Journal on Optimization. Volume: 12. Number: 2.
Pages: 479–502. doi: 10.1137/S1052623499363220.

[36] Zhuan Khye Koh and Laura Sanità. 2020. Stabilizing weighted graphs.
In: Mathematics of Operations Research. Volume: 45. Number: 4. Pages:
1318–1341. doi: 10.1287/moor.2019.1034.

[37] Jochen Könemann, Kate Larson and David Steiner. 2015. Network
Bargaining: Using Approximate Blocking Sets to Stabilize Unstable In-
stances. In: Theory of Computing Systems. Volume: 57. Number: 3.
Pages: 655–672. doi: 10.1007/s00224-015-9650-4.

[38] Eugene Lawler. 1976. Combinatorial optimization: networks and ma-
troids.

[39] Euiwoong Lee and Sahil Singla. 2020. Maximum matching in the online
batch-arrival model. In: ACM Transactions on Algorithms. Volume: 16.
Number: 4. doi: 10.1145/3399676.

[40] Adam N. Letchford, Gerhard Reinelt and Dirk Oliver Theis. 2008. Odd
minimum cut sets and b-matchings revisited. In: SIAM Journal on Dis-
crete Mathematics. Volume: 22. Number: 4. Pages: 1480–1487. doi: 10.
1137/060664793.

[41] John F. Nash. 1950. The bargaining problem. In: Econometrica. Volume:
18. Number: 2. Pages: 155–162. doi: 10.2307/1907266.

[42] Daniël Paulusma. 2001. Complexity aspects of cooperative games. PhD
thesis. University of Twente. url: https://research.utwente.nl/
en/publications/complexity-aspects-of-cooperative-games.

128

http://hdl.handle.net/10012/18705
http://hdl.handle.net/10012/18705
https://doi.org/10.1016/0041-5553(80)90061-0
https://doi.org/10.1145/509907.510017
https://doi.org/10.1145/1374376.1376994
https://doi.org/10.1145/1374376.1376994
https://doi.org/10.1137/S1052623499363220
https://doi.org/10.1287/moor.2019.1034
https://doi.org/10.1007/s00224-015-9650-4
https://doi.org/10.1145/3399676
https://doi.org/10.1137/060664793
https://doi.org/10.1137/060664793
https://doi.org/10.2307/1907266
https://research.utwente.nl/en/publications/complexity-aspects-of-cooperative-games
https://research.utwente.nl/en/publications/complexity-aspects-of-cooperative-games

Bibliography

[43] J. Scott Provan and Michael O. Ball. 1983. The complexity of counting
cuts and of computing the probability that a graph is connected. In: SIAM
Journal on Computing. Volume: 12. Number: 4. Pages: 777–788. doi:
10.1137/0212053.

[44] Ramamoorthi Ravi and Amitabh Sinha. 2006. Hedging uncertainty: ap-
proximation algorithms for stochastic optimization problems. In: Math-
ematical Programming. Volume: 108. Number: 1. Pages: 97–114. doi:
10.1007/s10107-005-0673-5.

[45] Thomas Rothvoss. 2017. The matching polytope has exponential exten-
sion complexity. In: Journal of the ACM. Volume: 64. Number: 6. doi:
10.1145/3127497.

[46] Laura Sanità. 2018. The diameter of the fractional matching polytope
and its hardness implications. In: IEEE 59th Annual Symposium on
Foundations of Computer Science. Pages: 910–921. doi: 10.1109/FOCS.
2018.00090.

[47] Alexander Schrijver. 2003. Combinatorial optimization: polyhedra and
efficiency.

[48] András Sebő. 1997. Potentials in undirected graphs and planar multi-
flows. In: SIAM Journal on Computing. Volume: 26. Number: 2. Pages:
582–603. doi: 10.1137/S0097539790186704.

[49] Paul D. Seymour. 1979. Sums of circuits. In: Graph Theory and Related
Topics. Pages: 341–355.

[50] Lloyd S. Shapley and Martin Shubik. 1971. The assignment game I: The
core. In: International Journal of Game Theory. Volume: 1. Number: 1.
Pages: 111–130. doi: 10.1007/BF01753437.

[51] Chaitanya Swamy and David B. Shmoys. 2012. Sampling-based approx-
imation algorithms for multistage stochastic optimization. In: SIAM
Journal on Computing. Volume: 41. Number: 4. Pages: 975–1004. doi:
10.1137/100789269.

[52] Chaitanya Swamy and David B. Shmoys. 2008. The sample average ap-
proximation method for 2-stage stochastic optimization. Unpublished
manuscript. url: https : / / www . math . uwaterloo . ca / ~cswamy /

papers/SAAproof.pdf.

129

https://doi.org/10.1137/0212053
https://doi.org/10.1007/s10107-005-0673-5
https://doi.org/10.1145/3127497
https://doi.org/10.1109/FOCS.2018.00090
https://doi.org/10.1109/FOCS.2018.00090
https://doi.org/10.1137/S0097539790186704
https://doi.org/10.1007/BF01753437
https://doi.org/10.1137/100789269
https://www.math.uwaterloo.ca/~cswamy/papers/SAAproof.pdf
https://www.math.uwaterloo.ca/~cswamy/papers/SAAproof.pdf

List of Publications

As convention in the field, the authors are listed in alphabetical order.

Journal Articles

[V1] Matthew Gerstbrein, Laura Sanità and Lucy Verberk. 2025. Stabiliza-
tion of capacitated matching games. In: Mathematical Programming.
Volume: 210. Number: 1. Pages: 313–334. doi: 10.1007/s10107-024-
02169-x.

[V2] Laura Sanità and Lucy Verberk. 2025. A note on the core of 2-matching
games. In: Operations Research Letters. Volume: 61. Pages: 107299. doi:
10.1016/j.orl.2025.107299.

[V3] Laura Sanità and Lucy Verberk. 2025. Capacitated Network Bargain-
ing Games: Stability and Structure. In: Mathematics of Operations Re-
search. doi: 10.1287/moor.2024.0668. (Available online ahead of
print.)

Conference Proceedings

[V4] Matthew Gerstbrein, Laura Sanità and Lucy Verberk. 2023. Stabiliza-
tion of capacitated matching games. In: Integer Programming and Com-
binatorial Optimization. Pages: 157–171. doi: 10.1007/978-3-031-
32726-1_12.

Preprints

[V5] Laura Sanità and Lucy Verberk. 2025. Two-stage stochastic assignment
games. arXiv: 2506.01509.

131

https://doi.org/10.1007/s10107-024-02169-x
https://doi.org/10.1007/s10107-024-02169-x
https://doi.org/10.1016/j.orl.2025.107299
https://doi.org/10.1287/moor.2024.0668
https://doi.org/10.1007/978-3-031-32726-1_12
https://doi.org/10.1007/978-3-031-32726-1_12
https://arxiv.org/abs/2506.01509

Summary

In this dissertation we study network bargaining games and cooperative match-
ing games. These games are defined on graphs, and involve the structure of
matchings. The vertices of the graph represent the players of the game, and
the edges represent how players can interact with each other. Most of this dis-
sertation considers c-matchings (capacity-matchings), where each vertex has a
capacity that indicates how often the vertex can be used in a matching.

There is a notion of stable solutions for network bargaining games, which
nicely relates to some structural property of the graph, called stability. Not
all graphs are stable, which naturally yields the problem of stabilizing graphs.
We study this in the first part of this dissertation: We consider stabilizing
a graph by removing a minimum number of vertices, reducing a minimum
amount of capacity and removing a minimum number of edges. We show that
stabilizing by removing vertices is APX-hard when there are vertex capacities.
On the other hand, stabilizing by reducing the capacity of vertices is solvable in
polynomial time and our algorithm generalizes the unit-capacity algorithm for
removing vertices. Stabilizing by removing edges was already known to be NP-
hard in unit-capacity graphs. We generalize the unit-capacity approximation
algorithm. For the latter two results we use new polyhedral techniques.

There is a variation of the stabilization problem where in addition a c-matching
is given that needs to be avoided by the stabilizer, and needs to have maxi-
mum weight in the resulting graph. In unit-capacity graphs it is known that
stabilizing by removing vertices with this additional constraint is NP-hard but
attains a 2-approximation algorithm, and can be solved exactly if the given
matching has maximum weight. We show that both of these algorithmic results
generalize to capacitated graphs.

In the second part of this dissertation we focus on cooperative matching games.
First we study the core of 2-matching games (cooperative matching games
where all vertex capacities are at most two): we discuss how to separate over
the core of 2-matching games in polynomial time, and prove the existence of
a compact extended formulation for it. Next we study two-stage stochastic

133

Summary

cooperative matching games in bipartite graphs, where in the second stage
the players and their possible interactions are sampled from a distribution.
The goal here is to compute a first-stage core element that minimizes the
expected total decrease in the second stage. We show that if the second-
stage distribution is given explicitly, this problem can be solved in polynomial
time. On the other hand, if the second-stage distribution is given implicitly
by a sampling oracle, the problem is computationally hard, but it can be
approximated with the SAA method.

134

Acknowledgements

I would like to thank everyone that contributed to the writing of this disser-
tation, in any way.

First and foremost, I want to thank Laura, my supervisor, for introducing me
to the research world, and teaching me how to be a good researcher. Even
though you moved to Milan at the end of my first year, we kept meeting once or
twice every week. I appreciate the amount of time you had for these meetings,
where we could think about the problems together. Your guidance throughout
my PhD was invaluable. It was a pleasure to work together with you.

Next, I want to thank Frits. It has been great to be part of your research
group, the CO group. We first got to work together, when you involved me in
the supervision of the final project of two master students. Then in the last
year of my PhD, you became my second promotor. I thank you for taking the
time to carefully read this dissertation and providing detailed and valuable
feedback.

I would like to thank my committee members for taking the time to read this
dissertation and providing valuable feedback.

I would like to thank all my colleagues for providing a great and fun work
environment these last four years, in particular, my colleagues in the CO group.
The lunches and snack competitions were a relaxing distraction during work.
I also enjoyed the SPOR drinks and pizza nights, together with everyone from
the 4th floor. I especially want to thank Nils and Emanuel, whom I shared the
office with the last year, and who occasionally listened to Taylor Swift with
me during work. Thinking back to how this journey started, I want to give
special thanks to Céline and Sjanne, who answered all of my questions about
what it is like to do a PhD.

Lastly, I want to thank my friends and family for their unconditional love and
support. In particular:

Zoë, bedankt voor bijna iedere week een ontspannen avondje bijkletsen en
series kijken. Laura en Yori, mijn lieve zusjes, bedankt dat jullie tijdens de

135

Acknowledgements

verdediging naast me staan. Mama en John, papa en Yvonne, Pim en Miranda,
Doriene en Martin, bedankt dat jullie er altijd voor mij en Gijs zijn, en dat
we altijd bij jullie terecht kunnen. In het bijzonder, mama en papa, bedankt
voor jullie onvoorwaardelijke liefde, voor de vrijheid om mijn eigen keuzes te
maken, voor het vertrouwen en de steun die jullie hebben in die keuzes, en
voor het vertrouwen in mij. Bedankt voor alles.

Tot slot, Gijs. Ten eerste wil ik je bedanken voor je directe hulp bij mijn PhD,
zoals als eerste na mijn presentaties luisteren, en de proloog van dit proefschrift
doorlezen. Ik waardeer je feedback enorm. Maar ik wil je vooral bedanken voor
al 8 jaar samen. Van samen in mijn kleine studio zonder uitzicht, tot samen in
ons appartement op de 11e verdieping. Van onze vakanties en dagjes uit, tot
onze gaming dagjes in. Van samen studeren, tot tegelijkertijd een PhD doen,
en nu op naar het volgende avontuur.

Lucy Verberk
Eindhoven, September 2025

136

About the Author

Lucy Verberk was born on July 15, 1998 in Sint-Oedenrode, the Netherlands.
She completed her secondary school education in 2016 at Zwijsen College Veg-
hel. She proceeded to study Applied Mathematics at Eindhoven University
of Technology, where she obtained her bachelor’s degree in 2019 and her mas-
ter’s degree in 2021, specializing in combinatorial optimization. She stayed at
Eindhoven University of Technology to start her PhD in October 2021 under
the supervision of dr. Laura Sanità. The results of the research done during
her PhD are presented in this dissertation.

137

	I Introduction
	1 Prologue
	2 Notation and General Definitions
	2.1 Graph Theory
	2.1.1 Matching
	2.1.2 Capacity-Matching

	2.2 Fractional c-Matching Polytope
	2.2.1 Circuits
	2.2.2 Basic Fractional c-Matchings

	3 Problem Definition and Results
	3.1 Network Bargaining Games
	3.1.1 Stabilization

	3.2 Cooperative Matching Games
	3.2.1 Core Separation of 2-Matching Games
	3.2.2 Two-Stage Assignment Games

	3.3 Connection Between the Games

	II Stabilization
	4 The Stabilizer Problem
	4.1 Vertex-Stabilizer
	4.2 Key Polyhedral Tools
	4.3 Capacity-Stabilizer
	4.3.1 Increasing the Capacity

	4.4 Edge-Stabilizer

	5 The M-Stabilizer Problem
	5.1 M-Vertex-Stabilizer
	5.1.1 Auxiliary Construction
	5.1.2 Algorithm

	5.2 M-Edge-Stabilizer

	III Cooperative Matching Games
	6 Core Separation of 2-Matching Games
	6.1 Separating over the Core
	6.2 Compact Extended Formulation

	7 Two-Stage Assignment Games
	7.1 Explicit Distribution
	7.2 Implicit Distribution
	7.2.1 Hardness
	7.2.2 SAA Algorithm

	7.3 Multistage Setting

	Bibliography
	List of Publications
	Summary
	Acknowledgements
	About the Author

